The genetic stability of living cells is continually threatened by endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of single-strand breaks that arise in each cell every day. If left unrepaired, such breaks can give rise to potentially clastogenic or lethal chromosomal double-strand breaks. This article summarizes our current understanding of how mammalian cells detect and repair single strand breaks, and provides insights into novel polypeptide components of this process.

This content is only available as a PDF.
You do not currently have access to this content.