Human heparan sulphate N-deacetylase/N-sulphotransferase 1 sulphates the NH3+ group of the glucosamine moiety of the heparan chain in heparan sulphate/heparin biosynthesis. An open cleft that runs perpendicular to the sulphate donor 3´-phosphoadenosine 5´-phosphosulphate may constitute the acceptor substrate-binding site of the sulphotransferase domain (hNST1) [Kakuta, Sueyoshi, Negishi and Pedersen (1999) J. Biol. Chem. 274, 10673–10676]. When a hexasaccharide model chain is docked into the active site, only a trisaccharide (-IdoA-GlcN-IdoA-) portion interacts directly with the cleft residues: Trp-713, His-716 and His-720 from α helix 6, and Phe-640, Glu-641, Glu-642, Gln-644 and Asn-647 from random coil (residues 640–647). Mutation of these residues either abolishes or greatly reduces hNST1 activity. Glu-642 may play the critical role of catalytic base in the sulphuryl group transfer reaction, as indicated by its hydrogen-bonding distance to the NH3+ group of the glucosamine moiety in the model and by mutational data.

This content is only available as a PDF.
You do not currently have access to this content.