The mechanisms that regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) synthesis, transport, targeting and surface expression are of fundamental importance for fast excitatory neurotransmission and synaptic plasticity in the mammalian central nervous system. It has become apparent that these control processes involve complex sets of protein–protein interactions and many of the proteins responsible have been identified. We have been working to visualize AMPAR movement in living neurons in order to investigate the effects of blocking protein interactions. Here we outline the approaches used and the results obtained thus far.

This content is only available as a PDF.
You do not currently have access to this content.