Translation of the polycistronic 35S RNA of CaMV (cauliflower mosaic virus) occurs via a reinitiation mechanism, which requires TAV (transactivator/viroplasmin). To allow translation reinitiation of the major open reading frames on the polycistronic RNA, TAV interacts with the host translational machinery via eIF3 (eukaryotic initiation factor 3) and the 60S ribosome. Accumulation of TAV and eIF3 in the polysomal fraction isolated from CaMV-infected cells suggested that TAV prevents loss of eIF3 from the translating ribosomes during the first initiation event. The TAV–eIF3–80S complex could be detected in vitro by sucrose-gradient-sedimentation analysis. The question is whether TAV interacts directly with the 48S preinitiation complex or enters polysomes after the first initiation event. eIF4B, a component of the 48S initiation complex, can preclude formation of the TAV–eIF3 complex via competition with TAV for eIF3 binding; the eIF4B- and TAV-binding sites on eIF3g overlap. eIF4B out-competes TAV for binding to eIF3 and to the eIF3–40S complex. Transient overexpression of eIF4B in plant protoplasts specifically inhibits TAV-mediated transactivation of polycistronic translation. Our results thus indicate that eIF4B precludes TAV–eIF3–40S complex formation during the first initiation event. Consequently, overexpression of TAV in plant protoplasts affects only the second and subsequent initiation events. We propose a model in which TAV enters the host translational machinery at the eIF4B-removal step to stabilize eIF3 within polysomes.

You do not currently have access to this content.