A fundamental process in biology is the mechanism by which cells duplicate and divide to produce two identical daughter cells. The fission yeast, Schizosaccharomyces pombe, has proved to be an excellent model organism to study the role that gene expression plays in this process. The basic paradigm emerging is that a number of groups of genes are expressed in successive waves at different cell cycle times. Transcription of a particular group is controlled by a common DNA motif present in each gene's promoter, bound by a transcription factor complex. Each motif and transcription factor complex is specific to the time in the cell cycle when the group of genes is expressed. Examples of this are the MBF (MCB-binding factor)/MCB (MluI cell cycle box) system controlling gene expression at the start of S-phase, and PBF (PCB-binding factor)/PCB (Pombe cell cycle box) regulation of transcription at the end of mitosis. In some cases, these transcription control systems also operate during the alternative form of cell division, meiosis.

You do not currently have access to this content.