Insulin rapidly activates protein synthesis by activating components of the translational machinery including eIFs (eukaryotic initiation factors) and eEFs (eukaryotic elongation factors). In the long term, insulin also increases the cellular content of ribosomes to augment the capacity for protein synthesis. The rapid activation of protein synthesis by insulin is mediated primarily through phosphoinositide 3-kinase. This involves the activation of PKB (protein kinase B). In one case, PKB acts to phosphorylate and inactivate glycogen synthase kinase 3, which in turn phosphorylates and inhibits eIF2B. Insulin elicits the dephosphorylation and activation of eIF2B. Since eIF2B is required for recycling of eIF2, a factor required for all cytoplasmic translation initiation events, this will contribute to overall activation of protein synthesis. PKB also phosphorylates the TSC1 (tuberous sclerosis complex 1)–TSC2 complex to relieve its inhibitory action on the mTOR (mammalian target of rapamycin). Inhibition of mTOR by rapamycin markedly impairs insulin-activated protein synthesis. mTOR controls translation initiation and elongation. The cap-binding factor eIF4E can be sequestered in inactive complexes by 4E-BP1 (eIF4E-binding protein 1). Insulin elicits phosphorylation of 4E-BP1 and its release from eIF4E, allowing eIF4E to form initiation factor complexes. Insulin induces dephosphorylation and activation of eEF2 to accelerate elongation. Both effects are blocked by rapamycin. Insulin inactivates eEF2 kinase by increasing its phosphorylation at several mTOR-regulated sites. Insulin also stimulates synthesis of ribosomal proteins by promoting recruitment of their mRNAs into polyribosomes. This is inhibited by rapamycin. Several key questions remain about, for example, the mechanisms by which mTOR controls 4E-BP1 and eEF2 kinase and the control of ribosomal protein translation.
Skip Nav Destination
Article navigation
April 2006
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
Conference Article|
March 20 2006
Regulation of protein synthesis by insulin
C.G. Proud
C.G. Proud
1
1Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
1email [email protected]
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
September 14 2005
Online ISSN: 1470-8752
Print ISSN: 0300-5127
© 2006 The Biochemical Society
2006
Biochem Soc Trans (2006) 34 (2): 213–216.
Article history
Received:
September 14 2005
Citation
C.G. Proud; Regulation of protein synthesis by insulin. Biochem Soc Trans 1 April 2006; 34 (2): 213–216. doi: https://doi.org/10.1042/BST0340213
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |