The PDC (pyruvate dehydrogenase complex) plays a central role in the maintenance of glucose homoeostasis in mammals. The carbon flux through the PDC is meticulously controlled by elaborate mechanisms involving post-translational (short-term) phosphorylation/dephosphorylation and transcriptional (long-term) controls. The former regulatory mechanism involving multiple phosphorylation sites and tissue-specific distribution of the dedicated kinases and phosphatases is not only dependent on the interactions among the catalytic and regulatory components of the complex but also sensitive to the intramitochondrial redox state and metabolite levels as indicators of the energy status. Furthermore, differential transcriptional controls of the regulatory components of PDC further add to the complexity needed for long-term tuning of PDC activity for the maintenance of glucose homoeostasis during normal and disease states.

You do not currently have access to this content.