The unprocessed pro-form of the NGF (nerve growth factor), proNGF (NGF precursor, without signal peptide), has been suggested to have additional functions distinct from its role as a promoter of protein folding, i.e. apoptosis and/or neurotrophic activity. Aiming to gain insights into the specific molecular interactions that mediate proNGF biological activity and into the structural determinants stabilizing its pro-region, rm-proNGF (recombinant mouse proNGF) was expressed in Escherichia coli, refolded in vitro and characterized by physicochemical methods. X-ray solution scattering measurements (small angle X-ray scattering) revealed that rm-proNGF is dimeric in solution and appears to be anisometric when compared with the compact structure of the NGF dimer. Two structural models, a globular crab-like shape and an elongated rod-like shape, equally fit to the experimental results, pointing to an intrinsically structural disordered pro-region of NGF. The models obtained allowed the interpretation of TrkA (tropomyosin receptor kinase A) binding and activation assays in cell cultures, shedding new light on the key role of proNGF in neuronal survival and neurodegeneration.

You do not currently have access to this content.