Catalysis by the serine proteinases proceeds via a tetrahedral intermediate whose oxyanion is stabilized by hydrogen-bonding in the oxyanion hole. There have been extensive 13C-NMR studies of oxyanion and tetrahedral intermediate stabilization in trypsin, subtilisin and chymotrypsin using substrate-derived chloromethane inhibitors. One of the limitations of these inhibitors is that they irreversibly alkylate the active-site histidine residue which results in the oxyanion not being in the optimal position in the oxyanion hole. Substrate-derived glyoxal inhibitors are reversible inhibitors which, if they form tetrahedral adducts in the same way as substrates form tetrahedral intermediates, will overcome this limitation. Therefore we have synthesized 13C-enriched substrate-derived glyoxal inhibitors which have allowed us to use 13C-NMR and 1H-NMR to determine how they interact with proteinases. It is hoped that these studies will help in the design of specific and highly potent warheads for serine proteinase inhibitors.
Skip Nav Destination
Article navigation
June 2007
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
Conference Article|
May 22 2007
13C- and 1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors
J.P.G. Malthouse
J.P.G. Malthouse
1
1UCD School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
1email [email protected]
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
January 22 2007
Online ISSN: 1470-8752
Print ISSN: 0300-5127
© 2007 Biochemical Society
2007
Biochem Soc Trans (2007) 35 (3): 566–570.
Article history
Received:
January 22 2007
Citation
J.P.G. Malthouse; 13C- and 1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors. Biochem Soc Trans 1 June 2007; 35 (3): 566–570. doi: https://doi.org/10.1042/BST0350566
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |