The insidious progression of AD (Alzheimer's disease) is believed to be linked closely to the production, accumulation and aggregation of the ∼4.5 kDa protein fragment called Aβ (amyloid β-peptide). Aβ is produced by sequential cleavage of the amyloid precursor protein by two enzymes referred to as β- and γ-secretase. β-Secretase is of central importance, as it catalyses the rate-limiting step in the production of Aβ and was identified 7 years ago as BACE1 (β-site APP-cleaving enzyme 1). Soon afterwards, its homologue BACE2 was discovered, and both proteins represent a new subclass of the aspartyl protease family. Studies examining the regulation and function of β-secretase in the normal and AD brain are central to the understanding of excessive production of Aβ in AD, and in targeting and normalizing this β-secretase process if it has gone awry in the disease. Several reports indicate this, showing increased β-secretase activity in AD, with recent findings by our group showing changes in β-secretase enzyme kinetics in AD brain caused by an increased Vmax. This article gives a brief review of studies which have examined BACE1 protein levels and β-secretase activity in control and AD brain, considering further the expression of BACE2 in the human brain.

You do not currently have access to this content.