The canonical structural motif for co-ordination of non-haem ferrous iron in metal-dependent oxygenases is a facial triad of two histidine residues and one aspartate or glutamate residue. This so-called 2-His-1-carboxylate metallocentre is often accommodated in a double-stranded β-helix fold with the iron-co-ordinating residues located in the rigid core structure of the protein. At the sequence level, the metal ligands are arranged in a HXD/E…H motif (where the distance between the conserved histidine residues is variable). Interestingly, cysteine dioxygenase, among a growing number of other iron(II) oxygenases, has the carboxylate residue replaced by another histidine. In the present review, we compare the properties of 3-His and 2-His-1-carboxylate sites based on current evidence from high-resolution crystal structures, spectroscopic characterization of the metal centres and results from mutagenesis studies. Although the overall conformation of the two metal sites is quite similar, the carboxylate residue seems to accommodate a slightly closer co-ordination distance than the counterpart histidine. The ability of the 2-His-1-carboxylate site to fit a site-directed substitution by an alternatively co-ordinating or non-co-ordinating residue with retention of metal-binding capacity and catalytic function varies among different enzymes. However, replacement by histidine disrupted the activity in the three iron(II) oxygenases examined so far.

You do not currently have access to this content.