Protein–protein interactions are usually shown as interaction networks (graphs), where the proteins are represented as nodes and the connections between the interacting proteins are shown as edges. The graph abstraction of protein interactions is crucial for understanding the global behaviour of the network. In this mini review, we summarize basic graph topological properties, such as node degree and betweenness, and their relation to essentiality and modularity of protein interactions. The classification of hub proteins into date and party hubs with distinct properties has significant implications for relating topological properties to the behaviour of the network. We emphasize that the integration of protein interface structure into interaction graph models provides a better explanation of hub proteins, and strengthens the relationship between the role of the hubs in the cell and their topological properties.

You do not currently have access to this content.