PCR is widely employed as the initial DNA amplification step for genetic testing and cancer biomarker detection. However, a key limitation of PCR-based methods, including real-time PCR, is the inability to selectively amplify low levels of variant alleles in a wild-type allele background. As a result, downstream assays are limited in their ability to identify subtle genetic changes that can have a profound impact on clinical decision-making and outcome or that can serve as cancer biomarkers. We developed COLD-PCR (co-amplification at lower denaturation temperature-PCR) [Li, Wang, Mamon, Kulke, Berbeco and Makrigiorgos (2008) Nat. Med. 14, 579–584], a novel form of PCR that amplifies minority alleles selectively from mixtures of wild-type and mutation-containing sequences irrespective of the mutation type or position on the sequence. Consequently, COLD-PCR amplification from genomic DNA yields PCR products containing high-prevalence variant alleles that can be detected. Since PCR constitutes a ubiquitous initial step for almost all genetic analysis, COLD-PCR provides a general platform to improve the sensitivity of essentially all DNA-variation detection technologies including Sanger sequencing, pyrosequencing, single molecule sequencing, mutation scanning, mutation genotyping or methylation assays. COLD-PCR combined with real-time PCR provides a new approach to boost the capabilities of existing real-time mutation detection methods. We replaced regular PCR with COLD-PCR before sequencing or real-time mutation detection assays to improve mutation detection-sensitivity by up to 100-fold and identified novel p53/Kras/EGFR (epidermal growth factor receptor) mutations in heterogeneous cancer samples that were missed by all existing methods. For clinically relevant micro-deletions, COLD-PCR enabled exclusive amplification and isolation of the mutants. COLD-PCR is expected to have diverse applications in the fields of biomarker identification and tracing, genomic instability, infectious diseases, DNA methylation testing and prenatal identification of fetal alleles in maternal blood.

You do not currently have access to this content.