Glycans stand out from all classes of biomolecules because of their unsurpassed structural complexity. This is generated by variability in anomeric status of the glycosidic bond and its linkage points, ring size, potential for branching and introduction of diverse site-specific substitutions. What poses an enormous challenge for analytical processing is, at the same time, the basis for the fingerprint-like glycomic profiles of glycoconjugates and cells. What's more, the glycosylation machinery is sensitive to disease manifestations, earning glycan assembly a reputation as a promising candidate to identify new biomarkers. Backing this claim for a perspective in clinical practice are recent discoveries that even seemingly subtle changes in the glycan structure of glycoproteins, such as a N-glycan core substitution by a single sugar moiety, have far-reaching functional consequences. They are brought about by altering the interplay between the glycan and (i) its carrier protein and (ii) specific receptors (lectins). Glycan attachment thus endows the protein with a molecular switch and new recognition sites. Co-ordinated regulation of glycan display and presentation of the cognate lectin, e.g. in cancer growth regulation exerted by a tumour suppressor, further exemplifies the broad functional dimension inherent to the non-random shifts in glycosylation. Thus studies on glycobiomarkers converge with research on how distinct carbohydrate determinants are turned into bioactive signals.

You do not currently have access to this content.