The mechanisms for importing colicins from the extracellular medium into Escherichia coli target cells implicate a complex cascade of interactions with host proteins. It is known that colicins interact with membrane receptors, and they may appropriate them structurally, but not functionally, as a scaffold on the surface of the target cell so that they can be translocated across the outer membrane. During the import into the periplasm, colicins parasitize functionally membrane porins and energy-transducers by mimicking their natural substrates or interacting partners. Such structural or functional parasitism also takes place during the late molecular events responsible for the processing and translocation of nuclease colicins across the inner membrane. Two different RNase colicins (D and E3) require an endoproteolytic cleavage, dependent on the inner membrane ATPase/protease FtsH, in order to transfer their C-terminal toxic domain into the cytoplasm. Moreover, the processing of colicin D necessitates a specific interaction with the signal peptidase LepB, but without appropriating the catalytic activity of this enzyme. A comparison of the differences in structural and functional organizations of these two colicins, as well as the pore-forming colicin B, is discussed in the present paper in connection with the sequential steps of their import mechanisms and the exploitation of the machinery of the target cell.

You do not currently have access to this content.