The genetic information of every living organism is stored in its genomic DNA that is perceived as a chemically stable and robust macromolecule. But at the same time, to fulfil its functions properly, it also needs to be highly dynamic and flexible. This includes partial melting of the double helix or compaction and bending of the DNA often brought about by protein factors that are able to interact with DNA stretches in a specific and non-specific manner. The conformational changes in the DNA need to be understood in order to describe biological systems in detail. As these events play out on the nanometre scale, new biophysical approaches have been employed to monitor conformational changes in this regime at the single-molecule level. Focusing on transcription factor action on promoter DNA, we discuss how current biophysical techniques are able to quantitatively describe this molecular process.

You do not currently have access to this content.