The partitioning locus STB of the selfish plasmid, the 2μm circle, of Saccharomyces cerevisiae is essential for the propagation of this multi-copy extra-chromosomal DNA element with nearly chromosome-like stability. The functional competence of STB requires the plasmid-coded partitioning proteins Rep1 and Rep2 as well as host-coded proteins. Host factors that associate with STB in a Rep1- and Rep2-dependent manner also interact with centromeres, and play important roles in chromosome segregation. They include the cohesin complex and the centromere-specific histone H3 variant Cse4. The genetically defined point centromere of S. cerevisiae differs starkly from the much more widespread epigenetically specified regional centromeres of eukaryotes. The particularly small size of the S. cerevisiae centromere and the association of chromosome segregation factors with STB raise the possibility of an evolutionary link between these two partitioning loci. The unusual positive supercoiling harboured by the S. cerevisiae centromere and STB in vivo in their functional states, unveiled by recent experiments, bolsters the notion of their potential descent from an ancestral plasmid partitioning locus.

You do not currently have access to this content.