Dynamic carbon re-routing between catabolic and anabolic metabolism is an essential element of cellular transformation associated with tumour formation and immune cell activation. Such bioenergetic adaptations are important for cellular function and therefore require tight control. Carbohydrate phosphorylation has been proposed as a rate-limiting step of several metabolic networks. The recent identification of a sedoheptulose kinase indicated that free sedoheptulose is a relevant and accessible carbon source in humans. Furthermore, the bioavailability of its phosphorylated form, sedoheptulose 7-phosphate, appears to function as a rheostat for carbon-flux at the interface of glycolysis and the pentose phosphate pathway. In the present paper, we review reports of sedoheptulose metabolism, compare it with glucose metabolism, and discuss the regulation of sedoheptulose kinase as mechanism to achieve bioenergetic reprogramming in cells.

You do not currently have access to this content.