It is more than 50 years since protein histidine phosphorylation was first discovered in 1962 by Boyer and co-workers; however, histidine kinases are still much less well recognized than the serine/threonine and tyrosine kinases. The best-known histidine kinases are the two-component signalling kinases that occur in bacteria, fungi and plants. The mechanisms and functions of these kinases, their cognate response regulators and associated phosphorelay proteins are becoming increasingly well understood. When genomes of higher eukaryotes began to be sequenced, it did not appear that they contained two-component histidine kinase system homologues, apart from a couple of related mitochondrial enzymes that were later shown not to function as histidine kinases. However, as a result of the burgeoning sequencing of genomes from a wide variety of eukaryotic organisms, it is clear that there are proteins that correspond to components of the two-component histidine kinase systems in higher eukaryotes and that operational two-component kinase systems are likely to occur in these organisms. There is unequivocal direct evidence that protein histidine phosphorylation does occur in mammals. So far, only nucleoside diphosphate kinases have been shown to be involved in protein histidine phosphorylation, but their mechanisms of action are not well understood. It is clear that other, yet to be identified, histidine kinases also exist in mammals and that protein histidine phosphorylation may play important roles in higher eukaryotes.

You do not currently have access to this content.