A wide variety of G-protein-coupled receptors either activate or inhibit ACs (adenylate cyclases), thereby regulating cellular cAMP levels and consequently inducing proper physiological responses. Stimulatory and inhibitory G-proteins interact directly with ACs, whereas Gq-coupled receptors exert their effects primarily via Ca2+. Using the FRET-based cAMP sensor Epac1 (exchange protein directly activated by cAMP 1)–cAMPS (adenosine 3′,5′-cyclic monophosphorothioate), we studied cAMP levels in single living VSMCs (vascular smooth muscle cells) or HUVECs (human umbilical vein endothelial cells) with subsecond temporal resolution. Stimulation of purinergic (VSMCs) or thrombin (HUVECs) receptors rapidly decreased cAMP levels in the presence of the β-adrenergic agonist isoprenaline via a rise in Ca2+ and subsequent inhibition of AC5 and AC6. Specifically in HUVECs, we observed that, in the continuous presence of thrombin, cAMP levels climbed slowly after the initial decline with a delay of a little less than 1 min. The underlying mechanism includes phospholipase A2 activity and cyclo-oxygenase-mediated synthesis of prostaglandins. We studied further the dynamics of the inhibition of ACs via Gi-proteins utilizing FRET imaging to resolve interactions between fluorescently labelled Gi-proteins and AC5. FRET between Gαi1 and AC5 developed at much lower concentration of agonist compared with the overall Gi-protein activity. We found the dissociation of Gαi1 subunits and AC5 to occur slower than the Gi-protein deactivation. This led us to the conclusion that AC5, by binding active Gαi1, interferes with G-protein deactivation and reassembly and thereby might sensitize its own regulation.
Skip Nav Destination
Article navigation
April 2014
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
Conference Article|
March 20 2014
Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins
Markus Milde;
Markus Milde
*Department of Pharmacology and Clinical Pharmacy, University of Marburg, Karl-von-Frisch-Strasse 1, 35032 Marburg, Germany
Search for other works by this author on:
Ruth C. Werthmann;
Ruth C. Werthmann
*Department of Pharmacology and Clinical Pharmacy, University of Marburg, Karl-von-Frisch-Strasse 1, 35032 Marburg, Germany
Search for other works by this author on:
Kathrin von Hayn;
Kathrin von Hayn
*Department of Pharmacology and Clinical Pharmacy, University of Marburg, Karl-von-Frisch-Strasse 1, 35032 Marburg, Germany
Search for other works by this author on:
Moritz Bünemann
Moritz Bünemann
1
*Department of Pharmacology and Clinical Pharmacy, University of Marburg, Karl-von-Frisch-Strasse 1, 35032 Marburg, Germany
1To whom correspondence should be addressed (emailmoritz.buenemann@staff.uni-marburg.de).
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
January 02 2014
Online ISSN: 1470-8752
Print ISSN: 0300-5127
© The Authors Journal compilation © 2014 Biochemical Society
2014
Biochem Soc Trans (2014) 42 (2): 239–243.
Article history
Received:
January 02 2014
Citation
Markus Milde, Ruth C. Werthmann, Kathrin von Hayn, Moritz Bünemann; Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins. Biochem Soc Trans 1 April 2014; 42 (2): 239–243. doi: https://doi.org/10.1042/BST20130280
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.