The thymus is one of the cornerstones of an effective immune system. It produces new T-cells for the naïve T-cell pool, thus refreshing the peripheral repertoire. As we age, the thymus atrophies and there is a decrease in the area of active T-cell production. A decline in the output of the thymus eventually leads to changes in the peripheral T-cell pool which includes increases in the number of cells at or near their replicative limit and contraction of the repertoire. Debate about the age-associated changes in the thymus leading to functional decline centres on whether this is due to problems with the environment provided by the thymus or with defects in the progenitor cell compartment. In mice, the evidence points towards problems in the epithelial component of the thymus and the production of IL-7 (interleukin 7). But there are discussions about how appropriate mouse models are for human aging. We have developed a simple system that utilizes both human keratinocyte and fibroblast cell lines arrayed on a synthetic tantalum-coated matrix to provide a permissive environment for the maturation of human CD34+ haemopoietic progenitor cells into mature CD4+ or CD8+ T-lymphocytes. We have characterized the requirements for differentiation within these cultures and used this system to compare the ability of CD34+ cells derived from different sources to produce mature thymocytes. The TREC (T-cell receptor excision circle) assay was used as a means of identifying newly produced thymocytes.

You do not currently have access to this content.