Precise control of the amplitude of protein kinase C (PKC) signalling is essential for cellular homoeostasis, and disruption of this control leads to pathophysiological states such as cancer, neurodegeneration and diabetes. For conventional and novel PKC, this amplitude is meticulously tuned by multiple inputs that regulate the amount of enzyme in the cell, its ability to sense its allosteric activator diacylglycerol, and protein scaffolds that co-ordinate access to substrates. Key to regulation of the signalling output of most PKC isoenzymes is the ability of cytosolic enzyme to respond to the membrane-embedded lipid second messenger, diacylglycerol, in a dynamic range that prevents signalling in the absence of agonists but allows efficient activation in response to small changes in diacylglycerol levels. The present review discusses the regulatory inputs that control the spatiotemporal dynamics of PKC signalling, with a focus on conventional and novel PKC isoenzymes.

You do not currently have access to this content.