The discovery that nuclear factor erythroid 2-related factor 2 (Nrf2) undergoes translocational oscillations from cytoplasm to nucleus in human cells with frequency modulation linked to activation of a stress-stimulated cytoprotective response raises the prospect that the Nrf2 works mechanistically analogous to a wireless sensor. Herein, we consider how this new model of Nrf2 oscillation resolves previous inexplicable experimental findings on Nrf2 regulation and why it is fit-for-purpose. Further investigation is required to assess how generally applicable the oscillatory mechanism is and if characteristics of this regulatory control can be found in vivo. It suggests there are multiple, potentially re-enforcing receptors for Nrf2 activation, indicating that potent Nrf2 activation for improved health and treatment of disease may be achieved through combination of Nrf2 system stimulants.

You do not currently have access to this content.