Photoreceptor degeneration is the prominent characteristic of retinitis pigmentosa (RP), a heterogeneous group of inherited retinal dystrophies resulting in blindness. Although abnormalities in many pathways can cause photoreceptor degeneration, one of the most important causes is defective protein transport through the connecting cilium, the structure that connects the biosynthetic inner segment with the photosensitive outer segment of the photoreceptors. The majority of patients with X-linked RP have mutations in the retinitis pigmentosa GTPase regulator (RPGR) or RP2 genes, the protein products of which are both components of the connecting cilium and associated with distinct mechanisms of protein delivery to the outer segment. RP2 and RPGR proteins are associated with severe diseases ranging from classic RP to atypical forms. In this short review, we will summarise current knowledge generated by experimental studies and knockout animal models, compare and discuss the prominent hypotheses about the two proteins' functions in retinal cell biology.
-
Cover Image
Cover Image
Alternative splicing of intrinsically disordered segments can rewire protein interaction networks. In this issue, the Biochemical Society’s Colworth Medal winner, M. Madan Babu explores the contribution of intrinsically disordered regions to protein function, cellular complexity and human disease; see pages 1185–1200. [Credit: Guilhem Chalancon, MRC Laboratory of Molecular Biology, Cambridge, UK.]
Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations Available to Purchase
Rodanthi Lyraki, Roly Megaw, Toby Hurd; Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans 15 October 2016; 44 (5): 1235–1244. doi: https://doi.org/10.1042/BST20160148
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |