RNA degradation is a vital post-transcriptional process which ensures that transcripts are maintained at the correct level within the cell. DIS3L2 and XRN1 are conserved exoribonucleases that are critical for the degradation of cytoplasmic RNAs. Although the molecular mechanisms of RNA degradation by DIS3L2 and XRN1 have been well studied, less is known about their specific roles in the development of multicellular organisms or human disease. This review focusses on the roles of DIS3L2 and XRN1 in the pathogenesis of human disease, particularly in relation to phenotypes seen in model organisms. The known diseases associated with loss of activity of DIS3L2 and XRN1 are discussed, together with possible mechanisms and cellular pathways leading to these disease conditions.
-
Cover Image
Cover Image
Alternative splicing of intrinsically disordered segments can rewire protein interaction networks. In this issue, the Biochemical Society’s Colworth Medal winner, M. Madan Babu explores the contribution of intrinsically disordered regions to protein function, cellular complexity and human disease; see pages 1185–1200. [Credit: Guilhem Chalancon, MRC Laboratory of Molecular Biology, Cambridge, UK.]
The roles of the exoribonucleases DIS3L2 and XRN1 in human disease Available to Purchase
Amy L. Pashler, Benjamin P. Towler, Christopher I. Jones, Sarah F. Newbury; The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochem Soc Trans 15 October 2016; 44 (5): 1377–1384. doi: https://doi.org/10.1042/BST20160107
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |