The single-molecule approach seeks to understand molecular mechanisms by observing biomolecular processes at the level of individual molecules. These methods have led to a developing understanding that for many processes, a diversity of behaviours will be observed, representing a multitude of pathways. This realisation necessitates that an adequate number of observations are recorded to fully characterise this diversity. The requirement for large numbers of observations to adequately sample distributions, subpopulations, and rare events presents a significant challenge for single-molecule techniques, which by their nature do not typically provide very high throughput. This review will discuss many developing techniques which address this issue by combining nanolithographic approaches, such as zero-mode waveguides and DNA curtains, with single-molecule fluorescence microscopy, and by drastically increasing throughput of force-based approaches such as magnetic tweezers and laminar-flow techniques. These methods not only allow the collection of large volumes of single-molecule data in single experiments, but have also made improvements to ease-of-use, accessibility, and automation of data analysis.
-
Cover Image
Cover Image
An artistic model of the ‘molecular scissor’ ADAM10 (displayed in orange) at the cell surface, shown cleaving one of its substrates (green). ADAM10 is regulated by one of six TspanC8 tetraspanins (displayed in white or blue). The TspanC8s have distinct mechanisms of binding to ADAM10 and appear to dictate its substrate specificity. For more information, please see pages 719–730 in this issue of the Biochemical Society Transactions. Designer: Justyna Szyroka Artist: Eduardo Oliveira - Graphics Designer and Animator. Image kindly provided by Michael G Tomlinson.
The more the merrier: high-throughput single-molecule techniques
Flynn R. Hill, Enrico Monachino, Antoine M. van Oijen; The more the merrier: high-throughput single-molecule techniques. Biochem Soc Trans 15 June 2017; 45 (3): 759–769. doi: https://doi.org/10.1042/BST20160137
Download citation file: