The Holliday junction (HJ) is an essential element in recombination and related mechanisms. The structure of this four-stranded DNA assembly, which is now well-defined alone and in complex with proteins, has led to its applications in areas well outside of molecular recombination, including nanotechnology and biophysics. This minireview explores some interesting recent research on the HJ, as it has been adapted to design regular two- or three-dimensional lattices for crystal engineering, and more complex systems through DNA origami. In addition, the sequence dependence of the structure is discussed in terms how it can be applied to characterize the geometries and energies of various noncovalent interactions, including halogen bonds in oxidatively damaged (halogenated) bases and hydrogen bonds associated with the epigenetic 5-hydroxylmethylcytosine base.
-
Cover Image
Cover Image
The Holliday junction. The structure of the Holliday junction is highly variable, being adaptable to its biological function in recombination and to applications in biomolecular engineering. This image shows the how the junction extends from simple schematics to crystal structures as DNA only and in protein complexes. In addition, the junction has been exploited as an element in the design of 2-D and 3-D lattices in crystal engineering and more complex images and shapes through DNA origami. In this issue of Biochemical Society Transactions, P. Shing Ho reviews some interesting recent research on the Holliday junction; for details see pages 1149–1158.
Structure of the Holliday junction: applications beyond recombination
P. Shing Ho; Structure of the Holliday junction: applications beyond recombination. Biochem Soc Trans 15 October 2017; 45 (5): 1149–1158. doi: https://doi.org/10.1042/BST20170048
Download citation file: