Ribosomes translate mRNAs with non-uniform speed. Translation velocity patterns are a conserved feature of mRNA and have evolved to fine-tune protein folding, expression and function. Synonymous single-nucleotide polymorphisms (sSNPs) that alter programmed translational speed affect expression and function of the encoded protein. Synergistic advances in next-generation sequencing have led to the identification of sSNPs associated with disease penetrance. Here, we draw on studies with disease-related proteins to enhance our understanding of mechanistic contributions of sSNPs to functional alterations of the encoded protein. We emphasize the importance of identification of sSNPs along with disease-causing mutations to understand genotype–phenotype relationships.
-
Cover Image
Cover Image
The image represents a simplified ‘open’ cell of the gram-positive bacterium Streptomyces coelicolor and selected components of its zinc metabolism. The zinc sensor protein – zinc uptake regulator (Zur) – is shown in metallic blue in the middle, bound to DNA (green) where it works as a transcriptional repressor when zinc levels are adequate. The Zur-regulated high-affinity zinc uptake system ZnuABC is shown in purple. Synthesis of the secreted zincophore coelibactin is also Zur-regulated. Zinc ions are shown as silver balls surrounding the cell, and bound to Zur; for details see pages 983–1001.
The image has been created by Alevtina Mikhaylina with the help of Claudia A. Blindauer and David J. Scanlan.
Timing during translation matters: synonymous mutations in human pathologies influence protein folding and function Available to Purchase
Robert Rauscher, Zoya Ignatova; Timing during translation matters: synonymous mutations in human pathologies influence protein folding and function. Biochem Soc Trans 20 August 2018; 46 (4): 937–944. doi: https://doi.org/10.1042/BST20170422
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |