Abstract

Advances in bioinformatics and high-throughput genetic analysis increasingly allow us to predict the genetic basis of adaptive traits. These predictions can be tested and confirmed, but the molecular-level changes — i.e. the molecular adaptation — that link genetic differences to organism fitness remain generally unknown. In recent years, a series of studies have started to unpick the mechanisms of adaptation at the molecular level. In particular, this work has examined how changes in protein function, activity, and regulation cause improved organismal fitness. Key to addressing molecular adaptations is identifying systems and designing experiments that integrate changes in the genome, protein chemistry (molecular phenotype), and fitness. Knowledge of the molecular changes underpinning adaptations allow new insight into the constraints on, and repeatability of adaptations, and of the basis of non-additive interactions between adaptive mutations. Here we critically discuss a series of studies that examine the molecular-level adaptations that connect genetic changes and fitness.

You do not currently have access to this content.