The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, ‘hybrid’ mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.
-
Cover Image
Cover Image
The cover image depicts a combination of a 3D reconstruction of ER-TGN contact sites by focus ion beam-scanning electron microscopy (FIB-SEM) and five images showing the visualization of the contacts by FRET/FLIM. The 3D reconstruction of the Golgi stack was generated from FIB-SEM tomography of a HepG2 cell using IMOD software. The ER cisterna is shown in red (with ribosomes as white circles), while the trans-most cisterna of the Golgi stack is shown in green (with emerging clathrin-coated buds decorated by pink dots). The five FLIM images are from HeLa cells expressing a TGN reporter (TGN46-GFP) and an ER reporter (mCherry-Cb5). The pseudocolour scale represents donor (i.e. GFP) lifetime (τ) values ranging from 1.8 (blue) to 2.7 ns (red) under conditions that destabilize (left) or stabilize ER-TGN contact sites. For further information, see the review by Venditti and colleagues (pp. 187–197). Image courtesy of Maria Antonietta De Matteis.
Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract
L.E. Zaragosi, M. Deprez, P. Barbry; Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract. Biochem Soc Trans 28 February 2020; 48 (1): 327–336. doi: https://doi.org/10.1042/BST20191010
Download citation file: