Synthetic gene circuits allow programming in DNA the expression of a phenotype at a given environmental condition. The recent integration of memory systems with gene circuits opens the door to their adaptation to new conditions and their re-programming. This lays the foundation to emulate neuromorphic behaviour and solve complex problems similarly to artificial neural networks. Cellular products such as DNA or proteins can be used to store memory in both digital and analog formats, allowing cells to be turned into living computing devices able to record information regarding their previous states. In particular, synthetic gene circuits with memory can be engineered into living systems to allow their adaptation through reinforcement learning. The development of gene circuits able to adapt through reinforcement learning moves Sciences towards the ambitious goal: the bottom-up creation of a fully fledged living artificial intelligence.
-
Cover Image
Cover Image
The transcript is populated with numerous overlapping codes that regulate all steps of gene expression. These codes cannot be readily discovered and understood without the use of computational modelling and algorithms. In this issue (see pages 1519–1528), Bahiri-Elitzur and Tuller summarize and discuss the different approaches that have been employed in the field in recent years. This cover artwork has been created by Hagar Messer and was provided by Tamir Tuller.
Reinforcement learning in synthetic gene circuits Available to Purchase
Adrian Racovita, Alfonso Jaramillo; Reinforcement learning in synthetic gene circuits. Biochem Soc Trans 28 August 2020; 48 (4): 1637–1643. doi: https://doi.org/10.1042/BST20200008
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |