Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.
-
Cover Image
Cover Image
The plasma membrane of lymphocytes is highly compartmentalized in so-called nanodomains or protein islands. Proteins such as Caveolin-1 (pink), tetraspanins (blue) or flotillins (violet) define these protein islands and thereby regulate the functioning of the immune system. In this issue (see pages 2387–2397), Schaffer and Minguet discuss the importance of these protein islands regarding lymphocyte activation and the development of immunopathologies. This cover artwork has been created by Susana Minguet.
Fluorescent proteins for in vivo imaging, where's the biliverdin?
Felipe Montecinos-Franjola, John Y. Lin, Erik A. Rodriguez; Fluorescent proteins for in vivo imaging, where's the biliverdin?. Biochem Soc Trans 18 December 2020; 48 (6): 2657–2667. doi: https://doi.org/10.1042/BST20200444
Download citation file: