Aberrant cell surface glycosylation signatures are currently known to actively drive the neoplastic transformation of healthy cells. By disrupting the homeostatic functions of their protein carriers, cancer-associated glycans mechanistically underpin several molecular hallmarks of human malignancy. Furthermore, such aberrant glycan structures play key roles in the acquisition of molecular resistance to targeted therapeutic agents, which compromises their clinical efficacy, by modulating tumour cell aggressiveness and supporting the establishment of an immunosuppressive microenvironment. Recent advances in the study of the tumour cell glycoproteome have unravelled previously elusive molecular mechanisms of therapeutic resistance, guided the rational design of novel personalized therapeutic strategies, and may further improve the clinical performance of currently approved anti-cancer targeted agents. In this review, we highlight the impact of glycosylation in cancer targeted therapy, with particular focus on receptor tyrosine kinase-targeted therapy, immune checkpoints blockade therapy, and current developments on therapeutic strategies directed to glycan-binding proteins and other innovative glycan therapeutic strategies.
-
Cover Image
Cover Image
The cover image is an illustrative representation of chloroplast ATP synthases in a thylakoid membrane. In photosynthetic organisms the rotor complex of the ATP synthase (blue and cyan) is specifically adapted to physiological needs of the plant or cyanobacterial cell. For more details, see the review by Cheuk and Meier (pages 541–550). The figure was made by Anthony Cheuk.
Aberrant protein glycosylation in cancer: implications in targeted therapy Available to Purchase
Joana G. Rodrigues, Henrique O. Duarte, Celso A. Reis, Joana Gomes; Aberrant protein glycosylation in cancer: implications in targeted therapy. Biochem Soc Trans 30 April 2021; 49 (2): 843–854. doi: https://doi.org/10.1042/BST20200763
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |