Membrane proteins play vital roles in living organisms, serving as targets for most currently prescribed drugs. Membrane protein structural biology aims to provide accurate structural information to understand their mechanisms of action. The advance of membrane protein structural biology has primarily relied on detergent-based methods over the past several decades. However, detergent-based approaches have significant drawbacks because detergents often damage the native protein–lipid interactions, which are often crucial for maintaining the natural structure and function of membrane proteins. Detergent-free methods recently have emerged as alternatives with a great promise, e.g. for high-resolution structure determinations of membrane proteins in their native cell membrane lipid environments. This minireview critically examines the current status of detergent-free methods by a comparative analysis of five groups of membrane protein structures determined using detergent-free and detergent-based methods. This analysis reveals that current detergent-free systems, such as the styrene-maleic acid lipid particles (SMALP), the diisobutyl maleic acid lipid particles (DIBMALP), and the cycloalkane-modified amphiphile polymer (CyclAPol) technologies are not better than detergent-based approaches in terms of maintenance of native cell membrane lipids on the transmembrane domain and high-resolution structure determination. However, another detergent-free technology, the native cell membrane nanoparticles (NCMN) system, demonstrated improved maintenance of native cell membrane lipids with the studied membrane proteins, and produced particles that were suitable for high-resolution structural analysis. The ongoing development of new membrane-active polymers and their optimization will facilitate the maturation of these new detergent-free systems.
-
Cover Image
Cover Image
Depicted as playing cards belonging to the same suit, the paralogous MLL3 and MLL4 lysine methyltransferase (KMT) complexes share a common set of core and auxiliary subunits as well as similar histone methylase functions. On each card, largely divergent processes are described on opposing sides – highlighting the potential capacity of these KMT complexes to participate in both tumor-supportive and tumor-suppressive mechanisms. To understand how MLL3 and MLL4 can regulate such diverse and sometimes contrasting processes, read more in this review article by Wang and colleagues (pp. 1041–1054). Cover artwork created by Marvin Aberin with Biorender.com.
Detergent-free systems for structural studies of membrane proteins
Youzhong Guo; Detergent-free systems for structural studies of membrane proteins. Biochem Soc Trans 30 June 2021; 49 (3): 1361–1374. doi: https://doi.org/10.1042/BST20201080
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |