Nature uses a wide range of well-defined biomolecular assemblies in diverse cellular processes, where proteins are major building blocks for these supramolecular assemblies. Inspired by their natural counterparts, artificial protein-based assemblies have attracted strong interest as new bio-nanostructures, and strategies to construct ordered protein assemblies have been rapidly expanding. In this review, we provide an overview of very recent studies in the field of artificial protein assemblies, with the particular aim of introducing major assembly methods and unique features of these assemblies. Computational de novo designs were used to build various assemblies with artificial protein building blocks, which are unrelated to natural proteins. Small chemical ligands and metal ions have also been extensively used for strong and bio-orthogonal protein linking. Here, in addition to protein assemblies with well-defined sizes, protein oligomeric and array structures with rather undefined sizes (but with definite repeat protein assembly units) also will be discussed in the context of well-defined protein nanostructures. Lastly, we will introduce multiple examples showing how protein assemblies can be effectively used in various fields such as therapeutics and vaccine development. We believe that structures and functions of artificial protein assemblies will be continuously evolved, particularly according to specific application goals.

You do not currently have access to this content.