Maintenance of proteostasis is of utmost importance to cellular viability and relies on the coordination of many post-transcriptional processes to respond to stressful stimuli. Stress granules (SGs) are RNA–protein condensates that form after translation initiation is inhibited, such as during the integrated stress response (ISR), and may facilitate cellular adaptation to stress. The ribosome-associated quality control (RQC) pathway is a critical translation monitoring system that recognizes aberrant mRNAs encoding potentially toxic nascent peptides to target them for degradation. Both SG regulation and the RQC pathway are directly associated with translation regulation, thus it is of no surprise recent developments have demonstrated a connection between them. VCP's function in the stress activated RQC pathway, ribosome collisions activating the ISR, and the regulation of the 40S ribosomal subunit by canonical SG proteins during the RQC all connect SGs to the RQC pathway. Because mutations in genes that are involved in both SG and RQC regulation are associated with degenerative and neurological diseases, understanding the coordination and interregulation of SGs and RQC may shed light on disease mechanisms. This minireview will highlight recent advances in understanding how SGs and the RQC pathway interact in health and disease contexts.
-
Cover Image
Cover Image
Many dietary plants possess high levels of 18-carbon containing lipids from both omega-6 and omega-3 unsaturated fatty acids (e.g., linoleic and alpha-linolenic acid, respectively). These dietary lipids can be metabolized to lipid mediators collectively termed octadecanoids, which can in turn interact with immune cells (e.g., macrophages, eosinophils) to exert a number of potent biological effects. These octadecanoid lipid mediators have been little studied and represent an exciting new area of lipid biochemistry. For further information, see the review in this issue by Quaranta and colleagues (pages 1569–1582). Cover image credit: Emmanuelle Chevallier.
Is bRaQCing bad? New roles for ribosome associated quality control factors in stress granule regulation
Noah S. Helton, Stephanie L. Moon; Is bRaQCing bad? New roles for ribosome associated quality control factors in stress granule regulation. Biochem Soc Trans 16 December 2022; 50 (6): 1715–1724. doi: https://doi.org/10.1042/BST20220549
Download citation file: