For several years, a growing number of studies have highlighted the pivotal role of placental extracellular vesicles (EVs) throughout pregnancy. These membrane nanovesicles, heterogeneous in nature, composition and origin, are secreted by several trophoblastic cell types and are found in both the maternal and fetal compartments. They can be uptaken by recipient cells and drive a wide variety of physiological and pathological processes. In this review, we provide an overview of the different described roles of placental EVs in various aspects of normal pregnancy, from placenta establishment to maternal immune tolerance towards the fetus and protection against viral infections. In the second part, we present selected examples of pathological pregnancies in which placental EVs are involved, such as gestational diabetes mellitus, pre-eclampsia, and congenital infections. Since the abundance and/or composition of placental EVs is deregulated in maternal serum during pathological pregnancies, this makes them interesting candidates as non-invasive biomarkers for gestational diseases and opens a wide field of translational perspectives.
-
Cover Image
Cover Image
Many dietary plants possess high levels of 18-carbon containing lipids from both omega-6 and omega-3 unsaturated fatty acids (e.g., linoleic and alpha-linolenic acid, respectively). These dietary lipids can be metabolized to lipid mediators collectively termed octadecanoids, which can in turn interact with immune cells (e.g., macrophages, eosinophils) to exert a number of potent biological effects. These octadecanoid lipid mediators have been little studied and represent an exciting new area of lipid biochemistry. For further information, see the review in this issue by Quaranta and colleagues (pages 1569–1582). Cover image credit: Emmanuelle Chevallier.
Placental extracellular vesicles in maternal-fetal communication during pregnancy
Charlène Martin, Mathilde Bergamelli, Cécile E. Malnou, Gisela D'Angelo; Placental extracellular vesicles in maternal-fetal communication during pregnancy. Biochem Soc Trans 16 December 2022; 50 (6): 1785–1795. doi: https://doi.org/10.1042/BST20220734
Download citation file: