The rapid increase of ‘-omics' data warrants the reconsideration of experimental strategies to investigate general protein function. Studying individual members of a protein family is likely insufficient to provide a complete mechanistic understanding of family functions, especially for diverse families with thousands of known members. Strategies that exploit large amounts of available amino acid sequence data can inspire and guide biochemical experiments, generating broadly applicable insights into a given family. Here we review several methods that utilize abundant sequence data to focus experimental efforts and identify features truly representative of a protein family or domain. First, coevolutionary relationships between residues within primary sequences can be successfully exploited to identify structurally and/or functionally important positions for experimental investigation. Second, functionally important variable residue positions typically occupy a limited sequence space, a property useful for guiding biochemical characterization of the effects of the most physiologically and evolutionarily relevant amino acids. Third, amino acid sequence variation within domains shared between different protein families can be used to sort a particular domain into multiple subtypes, inspiring further experimental designs. Although generally applicable to any kind of protein domain because they depend solely on amino acid sequences, the second and third approaches are reviewed in detail because they appear to have been used infrequently and offer immediate opportunities for new advances. Finally, we speculate that future technologies capable of analyzing and manipulating conserved and variable aspects of the three-dimensional structures of a protein family could lead to broad insights not attainable by current methods.
-
Cover Image
Cover Image
Many dietary plants possess high levels of 18-carbon containing lipids from both omega-6 and omega-3 unsaturated fatty acids (e.g., linoleic and alpha-linolenic acid, respectively). These dietary lipids can be metabolized to lipid mediators collectively termed octadecanoids, which can in turn interact with immune cells (e.g., macrophages, eosinophils) to exert a number of potent biological effects. These octadecanoid lipid mediators have been little studied and represent an exciting new area of lipid biochemistry. For further information, see the review in this issue by Quaranta and colleagues (pages 1569–1582). Cover image credit: Emmanuelle Chevallier.
General strategies for using amino acid sequence data to guide biochemical investigation of protein function
Emily N. Kennedy, Clay A. Foster, Sarah A. Barr, Robert B. Bourret; General strategies for using amino acid sequence data to guide biochemical investigation of protein function. Biochem Soc Trans 16 December 2022; 50 (6): 1847–1858. doi: https://doi.org/10.1042/BST20220849
Download citation file: