Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.
-
Cover Image
Cover Image
Phagocytosis involves the engulfment and digestion of detrimental foreign objects (e.g., microbes) by different immune cells of our body, such as macrophages. Lipids play an important role during this immunological process, and hence, microbes have found ways to hijack these lipid pathways during phagocytosis to evade the immune system. For further information, see the review in this issue by Saharan and Kamat, pages 1279–1287. Image provided by Siddhesh Shashikant Kamat.
Conformations, interactions and functions of intrinsically disordered syndecans Available to Purchase
Sylvie Ricard-Blum, John R. Couchman; Conformations, interactions and functions of intrinsically disordered syndecans. Biochem Soc Trans 28 June 2023; 51 (3): 1083–1096. doi: https://doi.org/10.1042/BST20221085
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |