Cells encounter a variety of stresses throughout their lifetimes. Oxidative stress can occur via a myriad of factors, including exposure to chemical toxins or UV light. Importantly, these stressors induce chemical changes (e.g. chemical modifications) to biomolecules, such as RNA. Commonly, guanine is oxidized to form 8-oxo-7,8-hydroxyguanine (8-oxoG) and this modification can disrupt a plethora of cellular processes including messenger RNA translation and stability. Polynucleotide phosphorylase (PNPase), heterogeneous nuclear ribonucleoprotein D (HNRPD/Auf1), poly(C)-binding protein (PCBP1/HNRNP E1), and Y-box binding protein 1 (YB-1) have been identified as four RNA-binding proteins that preferentially bind 8-oxoG-modified RNA over unmodified RNA. All four proteins are native to humans and PNPase is additionally found in bacteria. Additionally, under oxidative stress, cell survival declines in mutants that lack PNPase, Auf1, or PCBP1, suggesting they are critical to the oxidative stress response. This mini-review captures the current understanding of the PNPase, HNRPD/Auf1, PCBP1, and YB-1 proteins and the mechanism that has been outlined so far by which they recognize and interact with 8-oxoG-modified RNAs.
-
Cover Image
Cover Image
Gas vesicles are protein megacomplexes filled with gas to allow aquatic bacteria to control their vertical position in the water column. The cover image shows a detailed model of a complete gas vesicle. The model is deposited and made publicly available in a data repository (zenodo.org/record/6458345). Besides the striking geometry of the structure, the image also highlights the function of gas vesicles as buoyancy devices (filled with yellow gas) and the gas-permeability of the wall (with yellow gas molecules diffusing around). For more information, see the article by Huber and Jakobi (pp. 205–215) in this issue. Image provided by Arjen Jakobi.
RNA-binding proteins that preferentially interact with 8-oxoG-modified RNAs: our current understanding
Kathleen E. Taylor, Lucas G. Miller, Lydia M. Contreras; RNA-binding proteins that preferentially interact with 8-oxoG-modified RNAs: our current understanding. Biochem Soc Trans 28 February 2024; 52 (1): 111–122. doi: https://doi.org/10.1042/BST20230254
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |