Even though neurons are post-mitotic cells, they still engage in protein synthesis to uphold their cellular content balance, including for organelles, such as the endoplasmic reticulum or mitochondria. Additionally, they expend significant energy on tasks like neurotransmitter production and maintaining redox homeostasis. This cellular homeostasis is upheld through a delicate interplay between mRNA transcription-translation and protein degradative pathways, such as autophagy and proteasome degradation. When faced with cues such as nutrient stress, neurons must adapt by altering their proteome to survive. However, in many neurodegenerative disorders, such as Parkinson's disease, the pathway and processes for coping with cellular stress are impaired. This review explores neuronal proteome adaptation in response to cellular stress, such as nutrient stress, with a focus on proteins associated with autophagy, stress response pathways, and neurotransmitters.
-
Cover Image
Cover Image
Single-molecule imaging techniques have revealed the dynamic nature of ion channels and shown that channel activity is sometimes dependent on their mobility and mechanical forces in the lipid membrane. The cover image shows a recent high-resolution cryo-EM image of the two-pore structure of the core complex of the mitochondrial outer membrane protein translocase (TOM) from the filamentous fungus
Neurospora crassa , together with a single-molecule false-color image illustrating the calcium flux through its two pores associated with conformational changes of this protein complex. The TOM core complex undergoes reversible transitions between active (high intensity pink dots), weakly active (medium intensity pink dots) and inactive (low intensity pink dots) channel states corresponding to the suspension of movement. For more information, see the article by Nussberger and colleagues (pp. 911–922) in this issue. Image provided by Shuo Wang.
How does the neuronal proteostasis network react to cellular cues?
Ki Hong Nam, Alban Ordureau; How does the neuronal proteostasis network react to cellular cues?. Biochem Soc Trans 24 April 2024; 52 (2): 581–592. doi: https://doi.org/10.1042/BST20230316
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |