Functional consequences of protein ubiquitination have gone far beyond the degradation regulation as was initially imagined during its discovery 40 years back. The state-of-the-art has revealed the plethora of signaling pathways that are largely regulated by ubiquitination process in eukaryotes. To no surprise, ubiquitination is often dysregulated in many human diseases, including cancer, neurodegeneration and infection. Hence it has become a major focus with high-gain research value for many investigators to unravel new proteoforms, that are the targets of this ubiquitination modification. Despite many biochemical or proteomic approaches available for ubiquitination detection, mass-spectrometry stood out to be the most efficient and transformative technology to read this complex modification script. Here in this review, we have discussed how different ubiquitin codes can be decoded qualitatively and quantitatively following various sequential proteomic approaches to date reported and indicated the current limitations with scope for improvements.
-
Cover Image
Cover Image
Single-molecule imaging techniques have revealed the dynamic nature of ion channels and shown that channel activity is sometimes dependent on their mobility and mechanical forces in the lipid membrane. The cover image shows a recent high-resolution cryo-EM image of the two-pore structure of the core complex of the mitochondrial outer membrane protein translocase (TOM) from the filamentous fungus
Neurospora crassa , together with a single-molecule false-color image illustrating the calcium flux through its two pores associated with conformational changes of this protein complex. The TOM core complex undergoes reversible transitions between active (high intensity pink dots), weakly active (medium intensity pink dots) and inactive (low intensity pink dots) channel states corresponding to the suspension of movement. For more information, see the article by Nussberger and colleagues (pp. 911–922) in this issue. Image provided by Shuo Wang.
Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches
Brindhavanam P T, Indrajit Sahu; Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches. Biochem Soc Trans 24 April 2024; 52 (2): 627–637. doi: https://doi.org/10.1042/BST20230457
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |