Gasdermin D (GSDMD) is a pore-forming protein that perforates the plasma membrane (PM) during pyroptosis, a pro-inflammatory form of cell death, to induce the unconventional secretion of inflammatory cytokines and, ultimately, cell lysis. GSDMD is activated by protease-mediated cleavage of its active N-terminal domain from the autoinhibitory C-terminal domain. Inflammatory caspase-1, -4/5 are the main activators of GSDMD via either the canonical or non-canonical pathways of inflammasome activation, but under certain stimuli, caspase-8 and other proteases can also activate GSDMD. Activated GSDMD can oligomerize and assemble into various nanostructures of different sizes and shapes that perforate cellular membranes, suggesting plasticity in pore formation. Although the exact mechanism of pore formation has not yet been deciphered, cysteine residues are emerging as crucial modulators of the oligomerization process. GSDMD pores and thus the outcome of pyroptosis can be modulated by various regulatory mechanisms. These include availability of activated GSDMD at the PM, control of the number of GSDMD pores by PM repair mechanisms, modulation of the lipid environment and post-translational modifications. Here, we review the latest findings on the mechanisms that induce GSDMD to form membrane pores and how they can be tightly regulated for cell content release and cell fate modulation.
-
Cover Image
Cover Image
Single-molecule imaging techniques have revealed the dynamic nature of ion channels and shown that channel activity is sometimes dependent on their mobility and mechanical forces in the lipid membrane. The cover image shows a recent high-resolution cryo-EM image of the two-pore structure of the core complex of the mitochondrial outer membrane protein translocase (TOM) from the filamentous fungus
Neurospora crassa , together with a single-molecule false-color image illustrating the calcium flux through its two pores associated with conformational changes of this protein complex. The TOM core complex undergoes reversible transitions between active (high intensity pink dots), weakly active (medium intensity pink dots) and inactive (low intensity pink dots) channel states corresponding to the suspension of movement. For more information, see the article by Nussberger and colleagues (pp. 911–922) in this issue. Image provided by Shuo Wang.
New insights into Gasdermin D pore formation
Shirin Kappelhoff, Eleonora G. Margheritis, Katia Cosentino; New insights into Gasdermin D pore formation. Biochem Soc Trans 24 April 2024; 52 (2): 681–692. doi: https://doi.org/10.1042/BST20230549
Download citation file:
Sign in
Sign in to your personal account
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Get Email Alerts
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |