Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.

Introduction

G protein-coupled receptors (GPCRs) are currently the most successfully targeted superfamily of receptors in modern medicine [1]. GPCRs are classified into five main families; Glutamate, Rhodopsin, Frizzled/Taste, Secretin and importantly for this review, Adhesion [2]. They are responsible for a large variety of cellular responses with a diverse selection of stimuli, resulting in a complex network of interactions between the ligands, the receptors and the signalling cascade. Whilst GPCRs in general are the most targeted receptor superfamily, historically very little pharmaceutical research has been conducted on adhesion GPCRs (aGPCRs). Despite their importance in adhesion, cell migration, paracrine signalling and numerous disease implications [3], aGPCR research has been hampered by the orphan status of many receptors. Nonetheless, aGPCRs provide an intriguing potential alternative drug target compared with many other families, in particular, within oncology and fertility. Several recent reviews have highlighted the emerging role of these receptors in therapeutics therefore it is not the aim of this review to reiterate these points [4,5]. Instead, here we aim to discuss the current understanding of known aGPCR ligands, their activation, structure and function.

aGPCR nomenclature has drastically changed since their discovery

What we know today as aGPCRs were first characterised in leukocytes in the 1980s. They were identified as the glycoproteins targeted by the mouse monoclonal antibody for F4/80, the mouse equivalent of the human GPCR EMR1 [6]. F4/80, EMR1 and CD97 were the first members of the GPCR subfamily originally known as EGF-TM7; named for the appearance of F4/80 as a chimera of 7-transmembrane receptors and epidermal growth factor (EGF) [7,8].

A misleading alternative name for this family was LNB-TM7, denoting its long N-terminal region, but also a close association with Class B1 GPCRs [9]. Early reviews often listed these GPCRs as a subfamily of Class B GPCRs, due to their sequence similarity in the 7 transmembrane helix domain (7TM) [10,11]. However, analysis of the entire GPCR superfamily revealed distinctions between this family and Class B1, in particular in the extracellular domain (ECD). This new family, with 24 members at the time, was named ‘adhesion’, for their apparent role in cell adhesion due to the mucin-like stalks in their N-terminal region [12,13]. Subsequently, all 33 human family members were divided further into nine clusters (Table 1), with each having a relatively high sequence similarity that the family lacks as a whole [14]. The International Union of Basic and Clinical Pharmacology defined the family fully in 2015 [15].

Endogenous ligands of aGPCR

Due to their role in cell-to-cell adhesion, it is unsurprising that several ‘anchor points’ such as receptors and proteins typically found in the plasma membrane can potentially activate aGPCRs [16]. A schematic representing this endogenous paracrine activation is portrayed in Figure 1. Phospholipids, such as phosphatidylserine (PS), are an integral part of the plasma membrane, involved in numerous cell signalling events, whilst exofacial PS is a key marker of apoptotic events [17]. PS can activate the brain specific angiogenesis inhibitor 1 (BAI1, ADGRB1) found on microglial cell surfaces and cause engulfment of the presenting cell. Further membrane-bound proteins associated with aGPCRs include the lysophosphatidic acid receptor (LPA1) present on the vast majority of mammalian tissues which can bind to CD97 (ADGRE5) found on lymphoid and myelinoid cells increasing the signalling of LPA1 [18]. Activation promotes adhesion and migration to sites of inflammation.

Aside from membrane bound proteins, secreted factors are also known to activate aGPCRs (Figure 1) [19]. These include secreted peptides and proteoglycans typically found in the extracellular fluid or the tissue stroma around the body. This is where the original classification of the aGPCRs, and their most closely related family, the Class B1 GPCRs showed their similarity with both classes activated through hydrophilic peptides. Whilst this is the case for some aGPCRs, many other non-peptide ligands have already been documented for aGPCRs (Table 1) [20]. Soluble aGPCR ligands are typically glycosaminoglycans, such as chondroitin sulfate found in lung and pancreatic tissue [21]. Other soluble ligands include proteins such as glutaminase interacting protein (GIP) as well as small molecules such as synaptamide, an endocannabinoid-like derivative [22,23]. This varied subset of ligands suggests a multifaceted role for these receptors outside of simply cell-to-cell adhesion and paracrine signalling. Despite their broad distribution and novel screening techniques, 17 of the 33 known aGPCRs are still without known endogenous ligands (Table 1), membrane-bound or unbound [24], with significant efforts focused on deorphanisation.

aGPCR structure is separated into two fragments, each with conserved and variable regions

aGPCRs are made up of two major components: N- and C-terminal fragments (NTF and CTF, respectively). The NTF encompasses most of the protein's ECD, comprising the GPCR autoproteolysis-inducing (GAIN) domain and a large, heavily glycosylated N-terminal region that varies in structure between each individual aGPCR and aGPCR sub-group. The CTF is C-terminal to the GAIN domain's GPCR proteolysis site (GPS), comprising the 7TM domain and an intracellular C-terminal tail (Figure 2).

aGPCR activation mechanisms suggest stalk and lever function

Due to the initial lack of endogenous ligands and modern techniques, initial exploration into the signalling of aGPCRs was slow. Despite having initially been placed into the Class B1 GPCR family, the large ECD lent itself to the ligand-binding site theory, like Class C GPCRs [25]. However, removal of part of the ECD increased receptor activity, contrary to the initial prediction of it decreasing due to the loss of the orthosteric site [26]. This led to the proposition of the disinhibition model of signalling where the N-terminal domain inhibits constitutive activity through locking to the 7-TM domain, which upon activation, moves away from the receptor to increase signalling. This theory was challenged by the discovery of protease-activated receptor (PAR) activation mechanisms through the tethered agonist model [27]. PARs are cleaved by a number of endogenous proteases as well as proteases found in other species, resulting in a shorter N-terminal peptide [28] that can fold into the activation domain on the receptor. In 2014, two independent teams observed activation of aGPCRs by polypeptide fragments exposed post-cleavage, indicating that the tethered agonist model also applies to aGPCRs [29,30]. This further pointed to the conserved GAIN domain being responsible for autoproteolysis, contrary to PARs which require external proteolytic action. The GAIN domain helped explain the initial results of an increase in activity following cleavage as the cut sites were coincidentally located within the GAIN domain itself, mimicking the typical response of aGPCR activation [31].

Although initial experimentation was difficult due to the hydrophobic nature of the fragments, cleavage and subsequent treatment using stalk fragments was successful. Single amino acid changes in the post cleavage stalk-peptides were discovered to have a variety of responses in aGPCRs, including inverse agonism [32]. This was partially explained with the stalk behaving like a lever and activity depending on its placement into the activation domain [33] (Figure 3A). This was given more credit thanks to the discovery of predicted β-turn elements within the stalk regions resulting in the stalk fragment bending into the receptor following cleavage [31]. The most recent theory suggests that the hydrophobic nature of the stalk contributes to the activity of the receptor, pushing it away from the aqueous ECD and into the relatively hydrophobic activation domain [22]. This does not explain all receptor activity however, with many noncleaved receptors still being able to signal in some capacity. Class B1 secretin-like GPCRs are also activated by soluble peptides such as glucagon and parathyroid hormone, exhibiting several activation states depending on the agonist present [34]. Therefore, it is likely that aGPCRs are also activated by allosteric agonists binding to the typically cleaved NTD. Currently, the exact mechanism is not known, but it may be postulated that agonist binding to an allosteric site could result in a conformational change of the NTD to push the stalk domain far enough into the activation domain of the receptor, eliciting activity through TMD to stabilse the active state (Figure 3B). Alternatively, there could be binding directly to the TMD stabilising it such as with cortisol and ADGRG3 (Table 1). This is further supported by the autoinhibitory nature of the GAIN domain with ligand binding to allosteric sites on the NTD relieving this action. Whilst orthosteric agonist activation is considered to result in full activation of the aGPCR, allosteric ligand binding can produce a graded response depending on the extent that the active site is stabilised. Many of these receptors have some degree of constitutive activity, without the need of an agonist present to elicit activity (Table 1 and Figure 3C). Finally, ligands may also bind to allosteric or orthosteric sites resulting in conformational changes that cause the opposite effect of typical agonism, also known as inverse agonism. These could move the stalk fragment away from the activation domain within the receptor, or destabilise the active site [35].

N-terminal motifs of aGPCRs vary heavily and may determine ligand binding

The N-terminal regions of aGPCRs are consistently longer than those of Class A GPCRs, hence their initial grouping with Class B1. Their high Ser/Thr content, with many being glycosylated, gives the region a rigid, extended structure with high solubility, similar to mucin. Hence, one of the first identified aGPCRs was termed the EGF module-containing mucin-like hormone receptor (EMR1/ADGRE1) [36]. However, this feature is unlikely to directly influence ligand binding, as shown for GPR56 (ADGRG1) and one of its ligands, collagen III [37].

Many domains found in the aGPCR NTF are conserved features found in other proteins and across the aGPCR subfamilies (Table 1 — readers are directed to Hamann et al. [15] for a pictural representation of these NTFs). For instance, the most common feature is the hormone receptor domain (HomR), most commonly proximal to the GAIN domain [14]. This bears a striking sequence similarity to HomRs found in Class B GPCRs, to the extent that the latter may have descended from aGPCRs [38]. However, the GAIN domain has been shown to block the hormone-binding site of the ADGRL1 HomR [39], making their use for binding hormone ligands unlikely.

All cluster II aGPCRs contain EGF-like domains that vary only subtly between individuals. For example, the 3 amino acids that differ between ADGRE2 and 5 cause a huge bias of the ligand CD55 towards ADGRE5 [40]. Some EGF-like domains bind Ca2+, which is important for maintaining their structure and mediating protein ligand binding [41]. The Calx-beta motif, found in ADGRV1, also binds Ca2+ in the NTF, as demonstrated by their presence in Na+/Ca2+ exchangers [42]. From this, some have inferred that Calx-beta motifs could use Ca2+ to bind ligands, similarly to Ca2+-binding EGF domains [43]. Moreover, Complement C1r/C1s, Uegf, Bmp1 (CUB) domains have been demonstrated to use Ca2+ to bind ligands in various proteins [44,45], and have recently been shown to mediate intramolecular interactions in the ADGRG6 ECD. This gives a closed conformation by giving an interface between the CUB domain's tip and the more distal HomR that may contribute to the signalling state of the receptor [46].

aGPCR NTFs contain other domains and motifs found in a variety of proteins that are known to bind specific protein partners. Arginine-glycine-aspartate (RGD) motifs are known to bind integrins and are notably found in ADGRE5 [47–49]. Pentraxin (PTX) domains are found in a variety of aGPCRs, with variations between individuals that allow recruitment of specific ligands to specific receptors. For instance, the PTX and CUB domains of ADGRG6 have been shown to bind collagen IV, but not other collagen subtypes [50]. While not every identified NTF domain has been matched to a binding partner, the expansive repertoire of motifs and structures present demonstrate the heterogeneity of the ligands with which this family may interact.

Alternative splicing also expands this repertoire. The most variable part of aGPCR transcripts is the region N-terminal to the GAIN domain. Here, the position of individual domains can be altered, by addition of Ser/Thr stretches that vary NTF structure, or excluded entirely [51]. This is demonstrated in ADGRG6, where inclusion of 23 amino acids, many of which are glycosylated, disrupts this receptor's closed conformation, instead giving the receptor a more extended conformation that disrupts its ability to facilitate myelination in vivo [46].

The GAIN domain separates aGPCRs into two fragments and may bind ligands

The GAIN domain is found almost ubiquitously in aGPCRs, between the variable N-terminal domains and the 7TM region, with only ADGRA1 lacking this region [14]. Its primary function is to allow receptor autoproteolysis at the GPS site, located proximally to the final β-strand (β13) of the GAINB subdomain (consensus: HLT, cleaving between L and T). These residues form a sharp turn, created by a disulfide bridge located proximally to the GPS and the Leu R-group being trapped in a hydrophobic pocket. Proteolysis is achieved by nucleophilic attack on the L-T peptide bond by the Thr R-group, with the resulting ester hydrolysing to give two separate fragments of the original protein [22,39,52].

There is also evidence for ligands binding to the GAIN domain to trigger aGPCR activation, such as CD90 binding ADGRE5 [49,53]. More recently, a small molecule agonist of ADGRF1, synaptamide, has been shown to interact with its GAIN domain [23]. These observations could explain the finding that cancer-causing mutations are found on the surface of the GAIN domain [39].

The aGPCR 7TM domain retains recognised GPCR functions with novel motifs

Cryo-electron microscopy (cryo-EM) was recently used to elucidate the first full-length structure of an active aGPCR (ADGRG3) in complex with small molecule agonists (glucocorticoids cortisol and beclomethasone) and Gαo [54]. The resultant structure had a 7TM region overall resembling that of a Class A GPCR, other than a greater separation between TM6 and TM7, giving a larger ligand-binding site. Extracellular Loop 2 (ECL2) forms a hydrophilic β-sheet that has a weak constitutive interaction with ECL3. This could act as a mechanism for relaying conformational changes from the NTF to the CTF upon ligand binding, allowing removal of the ECL2 ‘flexible lid’. This would expose the ligand binding pocket between TM6 and TM7, with the hydrophobic cores of glucocorticoid ligands packing against TM7. Alternatively, this feature may act to prevent dissociation of small molecule ligands by blocking their exit from the orthosteric site, slowing their dissociation rate and increasing the length of time over which the receptor signals, as seen in Class A GPCRs such as the endothelin-1 receptor B [55,56].

Unlike Class A GPCRs [57,58], ADGRG3 did not contain a core triad (IPF) motif or an NPxxY motif in TM7 that are involved in signal transduction across the GPCR. Instead of the core triad, ADGRG3 contained upper quaternary and lower triad cores (UQC and LTC) of hydrophobic residues that performed equivalent functions. A vital ‘toggle switch’ residue (W4906.53), contained within the UQC, recognises ligand binding and causes a conformational change that leads to its coupling to Gαo. Moreover, ADGRG3 lacks an ionic lock motif, normally found at the base of TM3 in Class A GPCRs (consensus: E/DRY), replacing it with a hydrophobic lock (HLY motif) that may perform similar roles in stabilising the receptor conformation on its cytoplasmic surface [54]. The differences in these key functional motifs between aGPCRs and other GPCR families further demonstrate the evolutionary distance between them, justifying the classification of aGPCRs as their own subfamily. The separation of the core triad into UQC and LTC between Family A and aGPCRs suggests a relatively distant common ancestor exists between the two. This structural difference also suggests the existence of novel methods for the design of small-molecule drugs targeting aGPCRs.

aGPCRs activate a variety of effectors

GPCRs typically propagate their activation signal through two main classes of effectors: heterotrimeric G proteins, and β-arrestins resulting in an incredibly varied intracellular response profile [59]. ADGRF1 (GPR110), for example, is activated by synaptamide and can increase intracellular cAMP in a Gs dependent-manner as well as mobilise intracellular Ca2+ in a Gq/11 dependent-manner, resulting in neurite growth and neurogenesis [60,61]. Interestingly, many of the downstream mediators and effectors of aGPCRs were discovered before their ligands, due to the self-cleavage aspect of their function. For example, ADGRG2 (GPR64) is currently an orphan receptor but due to manual cleavage of its NTD it has been observed to activate Gq mobilising intracellular Ca2+ [62] and Gs stimulating intracellular cAMP production [63]. ADGRG2 was also found to undergo β-arrestin-mediated endocytosis, further increasing its signalling repertoire by acting as a scaffold for downstream effectors.

β-arrestins are well known to mediate GPCR internalisation and activate numerous intracellular effectors for downstream signalling pathways, dependent on both the receptor itself as well as the ligand bound. Interestingly, β-arrestins can function in aGPCR signalling without full activation, which is atypical for many GPCRs [31]. The presence of the activating stalk in ADGRG1 was found to not be required for β-arrestin association, and therefore signalling. This could mean that allosteric agonism or even constitutive activity could be explained by arrestin recruitment and signal propagation. A further class of accessory protein recently discovered to interact with aGPCRs are the receptor activity-modifying proteins (RAMPs). RAMPs are a family of three single-pass transmembrane spanning proteins which were initially discovered to allow functional membrane expression and alter ligand specificity of the Class B1 GPCR calcitonin-like receptor (CALCRL) [64]. Since then, they have been discovered to interact with more GPCRs affecting receptor trafficking, downstream signalling and recycling [65,66]. Whilst the repertoire of RAMP-interacting GPCRs has expanded across Class A, B1 and C, in 2019, it was discovered that ADGRF5 (GPR116) interacts with RAMP2 and 3 [67]. Whilst the role of RAMPs in aGPCR function is currently unknown, this opens another avenue of research into aGPCR activity that may aide in the discovery of endogenous ligands which can only activate aGPCRs in the presence of RAMPs.

aGPCRs have a multitude of physiological effects

As mentioned previously and reviewed extensively by Monk et al. [68], aGPCRs have significant function in paracrine signalling. They have a major role in the immune system, demonstrated by the large variety of aGPCRs found on immune cells [69]. These include ADGRB1 (BAI1) described above, which is required for the phagocytosis of apoptotic cells and pathogens in the brain. In addition to this, other aGPCRs such as ADGRG1 (GPR56) have been shown to be present in inflammatory natural killer cells along with cytotoxic lymphocytes [70]. Paracrine signalling is not limited to the immune system however, with several aGPCRs including ADGRL1 (Latrophilin-1) being suggested to increase synapse formation and function [71]. ADGRC1 (CELSR1) is another aGPCR responsible for dendritogenesis and axon guidance where KO studies have shown impaired migration of branchiomotor neurons during development [72]. One other area in which aGPCR function is also seemingly is required in the trafficking of stem cells to the bone marrow and their retention therein to produce haematopoietic cells, likely using soluble ligands due to the systemic trafficking of these cells [73].

Clinical significance of aGPCR malfunction

aGPCRs have been implicated in numerous diseases, in particular, various types of cancers where a lack of function results in increased cell growth and metastasis [5]. One of the deadliest forms of cancer, lung cancer, can be severely affected by aGPCR mutations. ADGRB3 is an angiogenesis inhibitor, which has been found to be the most significantly mutated gene in 13% of lung squamous tumours, with mutations resulting in decreased activity of the receptor, increasing blood flow to the tumour [74]. Furthermore, it was discovered that in many lung cancers, the translation of ADGRB3 is decreased, resulting in reduced tumour suppressive effects provided by the receptor. Breast cancer was the second most diagnosed form of cancer in 2018 [75] and similarly to lung cancer, showed altered expression or mutation in aGPCRs. While typically not expressed in breast epithelial cells, ADGRE2 was shown to be up-regulated in invasive breast carcinomas and negatively correlated with survival and patient prognosis [76]. Previous research suggested ADGRE2 to have functions in the immune system therefore indicating further exploration is required in determining the secondary function in carcinoma progression. Recently, it was discovered that a further aGPCR, ADGRL4, promoted angiogenesis during both the development of the endothelium, as well as in several cancers where it is overexpressed. Of note is the lack of canonical GPCR signalling by this aGPCR, although several genes were found to have altered expression following activation suggesting an unusual method of signal transduction [24]. aGPCRs are quickly becoming a target of interest for other diseases outside of cancer, hopefully allowing for further harnessing of aGPCRs as therapeutic targets [73].

Perspectives

  • aGPCR research is a rapidly changing field with many orphan aGPCRs and an emerging picture of how agonists cause receptor activation. Further insights into these may help in rational drug design for aGPCRs. This would aid in treatments of diseases which aGPCRs are involved in, such as cancer, due to their control over angiogenesis and up-regulation in breast cancer.

  • The current consensus on aGPCR activation involves the GAIN domain acting in an autoinhibitory way to occlude a tethered ligand, as demonstrated by constitutively active aGPCR mutants. Ligands may bind to the NTF to cause the tethered ligand to be exposed, allowing its binding to the aGPCR orthosteric site and receptor activation. Recent cryo-EM studies have shown that, from here, aGPCR conformational changes reflect those in Class A GPCRs, but make use of different motifs.

  • Future directions may include the cryo-EM analysis of more aGPCRs to allow comparative structural studies demonstrating the importance of sites such as the UQC; further elucidation of how the binding of ligands to the NTF can cause receptor activation; and using this newfound knowledge of aGPCR activation to design drugs to alter their activity.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Open Access Statement

Open access for this article was enabled by the participation of University of Cambridge in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC.

Author Contributions

M.R. and T.N. wrote the manuscript. M.H. and G.L. revised and edited the manuscript.

Acknowledgements

This work was supported an AstraZeneca Scholarship awarded to MR, a Cambridge Trust and Christ's College Scholarship awarded to T.N. and a Medical Research Council Confidence in Concept award to G.L. and M.H. (MC_PC_17156).

Abbreviations

     
  • CUB

    C1r/C1s, Uegf, Bmp1

  •  
  • ECD

    extracellular domain

  •  
  • ECL2

    extracellular loop 2

  •  
  • EGF

    epidermal growth factor

  •  
  • GAIN

    GPCR autoproteolysis-inducing

  •  
  • GPS

    GPCR proteolysis site

  •  
  • LPA1

    lysophosphatidic acid receptor

  •  
  • PS

    phosphatidylserine

  •  
  • PTX

    Pentraxin

  •  
  • RAMPs

    receptor activity-modifying proteins

  •  
  • TM

    transmembrane

References

1
Sriram
,
K.
and
Insel
,
P.A.
(
2018
)
G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?
Mol. Pharmacol.
93
,
251
258
2
Lagerström
,
M.C.
and
Schiöth
,
H.B.
(
2008
)
Structural diversity of G protein-coupled receptors and significance for drug discovery
.
Nat. Rev. Drug Discov.
7
,
339
357
3
Bondarev
,
A.D.
,
Attwood
,
M.M.
,
Jonsson
,
J.
,
Chubarev
,
V.N.
,
Tarasov
,
V.V.
and
Schiöth
,
H.B.
(
2020
)
Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions
.
Expert Opin. Drug Discov.
15
,
1291
1307
4
Yona
,
S.
,
Lin
,
H.-H.
,
Siu
,
W.O.
,
Gordon
,
S.
and
Stacey
,
M.
(
2008
)
Adhesion-GPCRs: emerging roles for novel receptors
.
Trends Biochem. Sci.
33
,
491
500
5
Gad
,
A.A.
and
Balenga
,
N.
(
2020
)
The emerging role of adhesion GPCRs in cancer
.
ACS Pharmacol. Transl. Sci.
3
,
29
42
6
Starkey
,
P.M.
,
Turley
,
L.
and
Gordon
,
S.
(
1987
)
The mouse macrophage-specific glycoprotein defined by monoclonal antibody F4/80: characterization, biosynthesis and demonstration of a rat analogue
.
Immunology
60
,
117
122
PMID:
[PubMed]
7
McKnight
,
A.J.
and
Gordon
,
S.
(
1998
)
The EGF-TM7 family: unusual structures at the leukocyte surface
.
J. Leukoc. Biol.
63
,
271
280
8
McKnight
,
A.J.
and
Gordon
,
S.
(
1996
)
EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules
.
Immunol. Today
17
,
283
287
9
Stacey
,
M.
,
Lin
,
H.-H.
,
Gordon
,
S.
and
McKnight
,
A.J.
(
2000
)
LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors
.
Trends Biochem. Sci.
25
,
284
289
10
Flower
,
D.R.
(
1999
)
Modelling G-protein-coupled receptors for drug design
.
Biochim. Biophys. Acta Rev. Biomembr.
1422
,
207
234
11
Harmar
,
A.J.
(
2001
)
Family-B G-protein-coupled receptors
.
Genome Biol.
2
,
reviews3013.1
reviews3013.10
12
Crocker
,
P.R.
,
Morris
,
L.
and
Gordon
,
S.
(
1988
)
Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells
.
J. Cell Sci. Suppl.
9
,
185
206
13
Fredriksson
,
R.
,
Lagerström
,
M.C.
,
Lundin
,
L.-G.
and
Schiöth
,
H.B.
(
2003
)
The G-protein-coupled receptors in the human genome form five main families. phylogenetic analysis, paralogon groups, and fingerprints
.
Mol. Pharmacol.
63
,
1256
1272
14
Bjarnadóttir
,
T.K.
,
Fredriksson
,
R.
,
Höglund
,
P.J.
,
Gloriam
,
D.E.
,
Lagerström
,
M.C.
and
Schiöth
,
H.B.
(
2004
)
The human and mouse repertoire of the adhesion family of G-protein-coupled receptors
.
Genomics
84
,
23
33
15
Hamann
,
J.
,
Aust
,
G.
,
Araç
,
D.
,
Engel
,
F.B.
,
Formstone
,
C.
,
Fredriksson
,
R.
et al (
2015
)
International union of basic and clinical pharmacology. XCIV. adhesion G protein–coupled receptors
.
Pharmacol. Rev.
67
,
338
367
16
Stacey
,
M.
,
Chang
,
G.-W.
,
Davies
,
J.Q.
,
Kwakkenbos
,
M.J.
,
Sanderson
,
R.D.
,
Hamann
,
J.
et al (
2003
)
The epidermal growth factor–like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans
.
Blood
102
,
2916
2924
17
Naeini
,
M.B.
,
Bianconi
,
V.
,
Pirro
,
M.
and
Sahebkar
,
A.
(
2020
)
The role of phosphatidylserine recognition receptors in multiple biological functions
.
Cell. Mol. Biol. Lett.
25
,
23
18
Riaz
,
A.
,
Huang
,
Y.
and
Johansson
,
S.
(
2016
)
G-Protein-Coupled lysophosphatidic acid receptors and their regulation of AKT signaling
.
Int. J. Mol. Sci.
17
,
215
19
Paavola
,
K.J.
and
Hall
,
R.A.
(
2012
)
Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation
.
Mol. Pharmacol.
82
,
777
783
20
Arimont
,
M.
,
van der Woude
,
M.
,
Leurs
,
R.
,
Vischer
,
H.F.
,
de Graaf
,
C.
and
Nijmeijer
,
S.
(
2019
)
Identification of key structural motifs involved in 7 transmembrane signaling of adhesion GPCRs
.
ACS Pharmacol. Transl. Sci.
2
,
101
113
21
Chiang
,
N.-Y.
,
Chang
,
G.-W.
,
Huang
,
Y.-S.
,
Peng
,
Y.-M.
,
Hsiao
,
C.-C.
,
Kuo
,
M.-L.
et al (
2016
)
Heparin interacts with the adhesion GPCR GPR56, reduces receptor shedding, and promotes cell adhesion and motility
.
J. Cell Sci.
129
,
2156
2169
22
Vizurraga
,
A.
,
Adhikari
,
R.
,
Yeung
,
J.
,
Yu
,
M.
and
Tall
,
G.G.
(
2020
)
Mechanisms of adhesion G protein–coupled receptor activation
.
J. Biol. Chem.
295
,
14065
14083
23
Huang
,
B.X.
,
Hu
,
X.
,
Kwon
,
H.-S.
,
Fu
,
C.
,
Lee
,
J.-W.
,
Southall
,
N.
et al (
2020
)
Synaptamide activates the adhesion GPCR GPR110 (ADGRF1) through GAIN domain binding
.
Commun. Biol.
3
,
109
24
Favara
,
D.M.
,
Liebscher
,
I.
,
Jazayeri
,
A.
,
Nambiar
,
M.
,
Sheldon
,
H.
,
Banham
,
A.H.
et al (
2021
)
Elevated expression of the adhesion GPCR ADGRL4/ELTD1 promotes endothelial sprouting angiogenesis without activating canonical GPCR signalling
.
Sci. Rep.
11
,
8870
25
Pin
,
J.-P.
,
Galvez
,
T.
and
Prézeau
,
L.
(
2003
)
Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors
.
Pharmacol. Ther.
98
,
325
354
26
Paavola
,
K.J.
,
Stephenson
,
J.R.
,
Ritter
,
S.L.
,
Alter
,
S.P.
and
Hall
,
R.A.
(
2011
)
The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity
.
J. Biol. Chem.
286
,
28914
28921
27
Nieberler
,
M.
,
Kittel
,
R.J.
,
Petrenko
,
A.G.
,
Lin
,
H.H.
and
Langenhan
,
T.
(
2016
) Control of Adhesion GPCR Function Through Proteolytic Processing. In
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
(
Langenhan
,
T.
and
Schöneberg
,
T.
, eds), pp.
83
109
,
Springer International Publishing
,
Cham
28
Heuberger
,
D.M.
and
Schuepbach
,
R.A.
(
2019
)
Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases
.
Thromb. J.
17
,
4
29
Liebscher
,
I.
,
Schön
,
J.
,
Petersen
,
S.C.
,
Fischer
,
L.
,
Auerbach
,
N.
,
Demberg
,
L.M.
et al (
2014
)
A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133
.
Cell Rep.
9
,
2018
2026
30
Luo
,
R.
,
Jeong
,
S.-J.
,
Yang
,
A.
,
Wen
,
M.
,
Saslowsky
,
D.E.
,
Lencer
,
W.I.
et al (
2014
)
Mechanism for adhesion G protein-coupled receptor GPR56-Mediated rhoA activation induced By collagen III stimulation
.
PLoS ONE
9
,
e100043
31
Stoveken
,
H.M.
,
Hajduczok
,
A.G.
,
Xu
,
L.
and
Tall
,
G.G.
(
2015
)
Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist
.
Proc. Natl Acad. Sci. U.S.A.
112
,
6194
6199
32
Kishore
,
A.
,
Purcell
,
R.H.
,
Nassiri-Toosi
,
Z.
and
Hall
,
R.A.
(
2016
)
Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1)
.
J. Biol. Chem.
291
,
3385
3394
33
Purcell
,
R.H.
and
Hall
,
R.A.
(
2018
)
Adhesion G protein–coupled receptors as drug targets
.
Annu. Rev. Pharmacol. Toxicol.
58
,
429
449
34
Krumm
,
B.
and
Roth
,
B.L.
(
2020
)
A structural understanding of class B GPCR selectivity and activation revealed
.
Structure
28
,
277
279
35
Salzman
,
G.S.
,
Zhang
,
S.
,
Gupta
,
A.
,
Koide
,
A.
,
Koide
,
S.
and
Araç
,
D.
(
2017
)
Stachel -independent modulation of GPR56/ADGRG1 signaling by synthetic ligands directed to its extracellular region
.
Proc. Natl Acad. Sci. U.S.A.
114
,
10095
10100
36
Baud
,
V.
,
Chissoe
,
S.L.
,
Viegas-Péquignot
,
E.
,
Diriong
,
S.
,
N'guyen
,
V.C.
,
Roe
,
B.A.
et al (
1995
)
EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments
.
Genomics
26
,
334
344
37
Luo
,
R.
,
Jin
,
Z.
,
Deng
,
Y.
,
Strokes
,
N.
and
Piao
,
X.
(
2012
)
Disease-Associated mutations prevent GPR56-collagen III interaction
.
PLoS ONE
7
,
e29818
38
Nordstrom
,
K.J.V.
,
Lagerstrom
,
M.C.
,
Waller
,
L.M.J.
,
Fredriksson
,
R.
and
Schioth
,
H.B.
(
2008
)
The secretin GPCRs descended from the family of adhesion GPCRs
.
Mol. Biol. Evol.
26
,
71
84
39
Araç
,
D.
,
Boucard
,
A.A.
,
Bolliger
,
M.F.
,
Nguyen
,
J.
,
Soltis
,
S.M.
,
Südhof
,
T.C.
et al (
2012
)
A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis: Cell-adhesion GPCRs mediates autoproteolysis
.
EMBO J.
31
,
1364
1378
40
Lin
,
H.-H.
,
Stacey
,
M.
,
Hamann
,
J.
,
Gordon
,
S.
and
McKnight
,
A.J.
(
2000
)
Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, Is closely related to CD97
.
Genomics
67
,
188
200
41
Rao
,
Z.
,
Handford
,
P.
,
Mayhew
,
M.
,
Knott
,
V.
,
Brownlee
,
G.G.
and
StuartZ
,
D.
(
1995
)
The structure of a Ca2+-binding epidermal growth factor-like domain: Its role in protein-protein interactions
.
Cell
82
,
131
141
42
Nikkila
,
H.
,
McMillan
,
D.R.
,
Nunez
,
B.S.
,
Pascoe
,
L.
,
Curnow
,
K.M.
and
White
,
P.C.
(
2000
)
Sequence similarities between a novel putative G protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain
.
Mol. Endocrinol.
14
,
1351
1364
43
McMillan
,
D.R.
and
White
,
P.C
. (
2010
) Studies on the very large g protein-coupled receptor: from initial discovery to determining its role in sensorineural deafness in higher animals. In
Adhesion-GPCRs: Structure to Function
(
Yona
,
S.
and
Stacey
,
M.
, eds), pp.
76
86
,
Springer
,
Boston, MA
44
Andersen
,
C.B.F.
,
Madsen
,
M.
,
Storm
,
T.
,
Moestrup
,
S.K.
and
Andersen
,
G.R.
(
2010
)
Structural basis for receptor recognition of vitamin-B12–intrinsic factor complexes
.
Nature
464
,
445
448
45
Venkatraman Girija
,
U.
,
Gingras
,
A.R.
,
Marshall
,
J.E.
,
Panchal
,
R.
,
MdA
,
S.
,
Gál
,
P.
et al (
2013
)
Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation
.
Proc. Natl Acad. Sci. U.S.A.
110
,
13916
13920
46
Leon
,
K.
,
Cunningham
,
R.L.
,
Riback
,
J.A.
,
Feldman
,
E.
,
Li
,
J.
,
Sosnick
,
T.R.
et al (
2020
)
Structural basis for adhesion G protein-coupled receptor Gpr126 function
.
Nat. Commun.
11
,
194
47
Plow
,
E.F.
,
Haas
,
T.A.
,
Zhang
,
L.
,
Loftus
,
J.
and
Smith
,
J.W.
(
2000
)
Ligand binding to integrins
.
J. Biol. Chem.
275
,
21785
8
48
Tjong
,
W.-Y.
and
Lin
,
H.-H.
(
2019
)
The RGD motif is involved in CD97/ADGRE5-promoted cell adhesion and viability of HT1080 cells
.
Sci. Rep.
9
,
1517
49
Wang
,
T.
,
Ward
,
Y.
,
Tian
,
L.
,
Lake
,
R.
,
Guedez
,
L.
,
Stetler-Stevenson
,
W.G.
et al (
2005
)
CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells
.
Blood
105
,
2836
2844
50
Paavola
,
K.J.
,
Sidik
,
H.
,
Zuchero
,
J.B.
,
Eckart
,
M.
and
Talbot
,
W.S.
(
2014
)
Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126
.
Sci. Signal.
7
,
ra76
51
Knierim
,
A.B.
,
Röthe
,
J.
,
Çakir
,
M.V.
,
Lede
,
V.
,
Wilde
,
C.
,
Liebscher
,
I.
et al (
2019
)
Genetic basis of functional variability in adhesion G protein-coupled receptors
.
Sci. Rep.
9
,
11036
52
Lin
,
H.-H.
,
Chang
,
G.-W.
,
Davies
,
J.Q.
,
Stacey
,
M.
,
Harris
,
J.
and
Gordon
,
S.
(
2004
)
Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif
.
J. Biol. Chem.
279
,
31823
31832
53
Wandel
,
E.
,
Saalbach
,
A.
,
Sittig
,
D.
,
Gebhardt
,
C.
and
Aust
,
G.
(
2012
)
Thy-1 (CD90) Is an interacting partner for CD97 on activated endothelial cells
.
J. Immunol.
188
,
1442
1450
54
Ping
,
Y.-Q.
,
Mao
,
C.
,
Xiao
,
P.
,
Zhao
,
R.-J.
,
Jiang
,
Y.
,
Yang
,
Z.
et al (
2021
)
Structures of the glucocorticoid-bound adhesion receptor GPR97–Go complex
.
Nature
589
,
620
626
55
Clozel
,
M.
,
Fischli
,
W.
and
Guilly
,
C.
(
1989
)
Specific binding of endothelin on human vascular smooth muscle cells in culture
.
J. Clin. Invest.
83
,
1758
1761
56
Shihoya
,
W.
,
Nishizawa
,
T.
,
Okuta
,
A.
,
Tani
,
K.
,
Dohmae
,
N.
,
Fujiyoshi
,
Y.
et al (
2016
)
Activation mechanism of endothelin ETB receptor by endothelin-1
.
Nature
537
,
363
368
57
Maeda
,
S.
,
Qu
,
Q.
,
Robertson
,
M.J.
,
Skiniotis
,
G.
and
Kobilka
,
B.K.
(
2019
)
Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes
.
Science
364
,
552
557
58
Rasmussen
,
S.G.F.
,
DeVree
,
B.T.
,
Zou
,
Y.
,
Kruse
,
A.C.
,
Chung
,
K.Y.
,
Kobilka
,
T.S.
et al (
2011
)
Crystal structure of the β2 adrenergic receptor–Gs protein complex
.
Nature
477
,
549
555
59
Simundza
,
J.
and
Cowin
,
P.
(
2013
)
Adhesion G-Protein-Coupled receptors: elusive hybrids come of Age
.
Cell Commun. Adhes.
20
,
213
225
60
Lee
,
J.-W.
,
Huang
,
B.X.
,
Kwon
,
H.
,
Rashid
,
M.A.
,
Kharebava
,
G.
,
Desai
,
A.
et al (
2016
)
Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function
.
Nat. Commun.
7
,
13123
61
Demberg
,
L.M.
,
Winkler
,
J.
,
Wilde
,
C.
,
Simon
,
K.-U.
,
Schön
,
J.
,
Rothemund
,
S.
et al (
2017
)
Activation of adhesion G protein-coupled receptors
.
J. Biol. Chem.
292
,
4383
4394
62
Zhang
,
D.-L.
,
Sun
,
Y.-J.
,
Ma
,
M.-L.
,
Wang
,
Y.
,
Lin
,
H.
,
Li
,
R.-R.
et al (
2018
)
Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility
.
eLife
7
,
e33432
63
Ahn
,
J.I.
,
Yoo
,
J.-Y.
,
Kim
,
T.H.
,
Kim
,
Y.I.
,
Broaddus
,
R.R.
,
Ahn
,
J.Y.
et al (
2019
)
G-protein coupled receptor 64 (GPR64) acts as a tumor suppressor in endometrial cancer
.
BMC Cancer
19
,
810
64
McLatchie
,
L.M.
,
Fraser
,
N.J.
,
Main
,
M.J.
,
Wise
,
A.
,
Brown
,
J.
,
Thompson
,
N.
et al (
1998
)
RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor
.
Nature
393
,
333
339
65
Mackie
,
D.I.
,
Nielsen
,
N.R.
,
Harris
,
M.
,
Singh
,
S.
,
Davis
,
R.B.
,
Dy
,
D.
et al (
2019
)
RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis
.
Proc. Natl Acad. Sci. U.S.A.
116
,
24093
24099
66
Routledge
,
S.J.
,
Ladds
,
G.
and
Poyner
,
D.R.
(
2017
)
The effects of RAMPs upon cell signalling
.
Mol. Cell Endocrinol.
449
,
12
20
67
Huang
,
K.-Y.
and
Lin
,
H.-H.
(
2018
)
The activation and signaling mechanisms of GPR56/ADGRG1 in melanoma cell
.
Front. Oncol.
8
,
304
68
Monk
,
K.R.
,
Hamann
,
J.
,
Langenhan
,
T.
,
Nijmeijer
,
S.
,
Schöneberg
,
T.
and
Liebscher
,
I.
(
2015
)
Adhesion G protein–Coupled receptors: From In vitro pharmacology to In vivo mechanisms
.
Mol. Pharmacol.
88
,
617
623
69
Lin
,
H.-H.
,
Hsiao
,
C.-C.
,
Pabst
,
C.
,
Hébert
,
J.
,
Schöneberg
,
T.
and
Hamann
,
J.
(
2017
)
Adhesion GPCRs in regulating immune responses and inflammation
.
Adv. Immunol.
136
,
163
201
70
Chang
,
G.-W.
,
Hsiao
,
C.-C.
,
Peng
,
Y.-M.
,
Vieira Braga
,
F.A.
,
Kragten
,
N.A.M.
,
Remmerswaal
,
E.B.M.
et al (
2016
)
The adhesion G protein-coupled receptor GPR56/ADGRG1 is an inhibitory receptor on human NK cells
.
Cell Rep.
15
,
1757
1770
71
Sando
,
R.
and
Südhof
,
T.C.
(
2021
)
Latrophilin GPCR signaling mediates synapse formation
.
eLife
10
,
e65717
72
Langenhan
,
T.
,
Piao
,
X.
and
Monk
,
K.R.
(
2016
)
Adhesion G protein-coupled receptors in nervous system development and disease
.
Nat. Rev. Neurosci.
17
,
550
561
73
Bassilana
,
F.
,
Nash
,
M.
and
Ludwig
,
M.-G.
(
2019
)
Adhesion G protein-coupled receptors: opportunities for drug discovery
.
Nat. Rev. Drug Discov.
18
,
869
884
74
Aust
,
G.
,
Zhu
,
D.
,
Van Meir
,
E.G.
and
Xu
,
L.
(
2016
) Adhesion GPCRs in Tumorigenesis. In
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
(
Langenhan
,
T.
and
Schöneberg
,
T.
, eds), pp.
369
396
,
Springer International Publishing
,
Cham
75
Bray
,
F.
,
Ferlay
,
J.
,
Soerjomataram
,
I.
,
Siegel
,
R.L.
,
Torre
,
L.A.
and
Jemal
,
A.
(
2018
)
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J. Clin.
68
,
394
424
76
Bhudia
,
N.
,
Desai
,
S.
,
King
,
N.
,
Ancellin
,
N.
,
Grillot
,
D.
,
Barnes
,
A.A.
et al (
2020
)
G protein-coupling of adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and activation of G protein signalling by an anti-EMR2 antibody
.
Sci. Rep.
10
,
1004
77
Lelianova
,
V.G.
,
Davletov
,
B.A.
,
Sterling
,
A.
,
Rahman
,
M.A.
,
Grishin
,
E.V.
,
Totty
,
N.F.
et al (
1997
)
α-Latrotoxin receptor, latrophilin, Is a novel member of the secretin family of G protein-coupled receptors
.
J. Biol. Chem.
272
,
21504
8
78
Matsushita
,
H.
,
Lelianova
,
V.G.
and
Ushkaryov
,
Y.A.
(
1999
)
The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution
.
FEBS Lett.
443
,
348
352
79
Silva
,
J.-P.
,
Lelianova
,
V.G.
,
Ermolyuk
,
Y.S.
,
Vysokov
,
N.
,
Hitchen
,
P.G.
,
Berninghausen
,
O.
et al (
2011
)
Latrophilin 1 and its endogenous ligand lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities
.
Proc. Natl Acad. Sci. U.S.A.
108
,
12113
8
80
O'Sullivan
,
M.L.
,
de Wit
,
J.
,
Savas
,
J.N.
,
Comoletti
,
D.
,
Otto-Hitt
,
S.
,
Yates
,
J.R.
et al (
2012
)
FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development
.
Neuron
73
,
903
910
81
Boucard
,
A.A.
,
Ko
,
J.
and
Südhof
,
T.C.
(
2012
)
High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/Latrophilin-1 produces an intercellular adhesion complex
.
J. Biol. Chem.
287
,
9399
9413
82
Jackson
,
V.A.
,
Mehmood
,
S.
,
Chavent
,
M.
,
Roversi
,
P.
,
Carrasquero
,
M.
,
del Toro
,
D.
et al (
2016
)
Super-complexes of adhesion GPCRs and neural guidance receptors
.
Nat. Commun.
7
,
11184
83
Nechiporuk
,
T.
,
Urness
,
L.D.
and
Keating
,
M.T.
(
2001
)
ETL, a novel seven-transmembrane receptor that Is developmentally regulated in the heart
.
J. Biol. Chem.
276
,
4150
4157
84
Nazarko
,
O.
,
Kibrom
,
A.
,
Winkler
,
J.
,
Leon
,
K.
,
Stoveken
,
H.
,
Salzman
,
G.
et al (
2018
)
A comprehensive mutagenesis screen of the adhesion GPCR latrophilin-1/ADGRL1
.
iScience
3
,
264
278
85
Mathiasen
,
S.
,
Palmisano
,
T.
,
Perry
,
N.A.
,
Stoveken
,
H.M.
,
Vizurraga
,
A.
,
McEwen
,
D.P.
et al (
2020
)
G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3
.
Nat. Chem. Biol.
16
,
1343
1350
86
Müller
,
A.
,
Winkler
,
J.
,
Fiedler
,
F.
,
Sastradihardja
,
T.
,
Binder
,
C.
,
Schnabel
,
R.
et al (
2015
)
Oriented cell division in the C. elegans embryo Is coordinated by G-Protein signaling dependent on the adhesion GPCR LAT-1
.
PLoS Genet.
11
,
e1005624
87
Gordon
,
S.
,
Lin
,
H.-H.
,
Hamann
,
J.
,
Kwakkenbos
,
M.J.
,
Kop
,
E.N.
,
Stacey
,
M.
et al (
2004
)
The EGF-TM7 family: a postgenomic view
.
Immunogenetics.
55
,
655
666
88
Hamann
,
J.
,
Vogel
,
B.
,
van Schijndel
,
G.M.
and
van Lier
,
R.A.
(
1996
)
The seven-span transmembrane receptor CD97 has a cellular ligand (CD55
.
DAF). J. Exp. Med.
184
,
1185
1189
89
Irmscher
,
S.
,
Brix
,
S.R.
,
Zipfel
,
S.L.H.
,
Halder
,
L.D.
,
Mutlutürk
,
S.
,
Wulf
,
S.
et al (
2019
)
Serum FHR1 binding to necrotic-type cells activates monocytic inflammasome and marks necrotic sites in vasculopathies
.
Nat. Commun.
10
,
2961
90
Boyden
,
S.E.
,
Desai
,
A.
,
Cruse
,
G.
,
Young
,
M.L.
,
Bolan
,
H.C.
,
Scott
,
L.M.
et al (
2016
)
Vibratory urticaria associated with a missense variant in ADGRE2
.
N. Engl. J. Med.
374
,
656
663
91
Hamann
,
J.
,
Hsiao
,
C.C.
,
Lee
,
C.S.
,
Ravichandran
,
K.S.
and
Lin
,
H.H.
(
2016
) Adhesion GPCRs as Modulators of Immune Cell Function. In
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
(
Langenhan
,
T.
and
Schöneberg
,
T.
, eds), pp.
329
150
,
Springer International Publishing
,
Cham
92
Hilbig
,
D.
,
Dietrich
,
N.
,
Wandel
,
E.
,
Gonsior
,
S.
,
Sittig
,
D.
,
Hamann
,
J.
et al (
2018
)
The interaction of CD97/ADGRE5 With β-Catenin in adherens junctions Is lost during colorectal carcinogenesis
.
Front. Oncol.
8
,
182
93
I
,
K.-Y.
,
Huang
,
Y.S
,
Hu
,
C.-H.
,
Tseng
,
W.-Y.
,
Cheng
,
C.-H.
,
Stacey
,
M.
et al (
2017
)
Activation of adhesion GPCR EMR2/ADGRE2 induces macrophage differentiation and inflammatory responses via Gα16/Akt/MAPK/NF-κB signaling pathways
.
Front. Immunol.
8
,
373
94
Vallon
,
M.
and
Essler
,
M.
(
2006
)
Proteolytically processed soluble tumor endothelial marker (TEM) 5 mediates endothelial cell survival during angiogenesis by linking integrin αvβ3 to glycosaminoglycans
.
J. Biol. Chem.
281
,
34179
34188
95
Chong
,
Z.-S.
,
Ohnishi
,
S.
,
Yusa
,
K.
and
Wright
,
G.J.
(
2018
)
Pooled extracellular receptor-ligand interaction screening using CRISPR activation
.
Genome Biol.
19
,
205
96
Krishnan
,
A.
,
Nijmeijer
,
S.
,
de Graaf
,
C.
and
Schiöth
,
H.B.
(
2016
) Classification, nomenclature, and structural aspects of adhesion GPCRs. In
Adhesion G Protein-Coupled Receptors
(
Langenhan
,
T.
and
Schöneberg
,
T.
, eds), pp.
15
41
,
Springer International Publishing
,
Cham
97
Spiess
,
K.
,
Bagger
,
S.O.
,
Torz
,
L.J.
,
Jensen
,
K.H.R.
,
Walser
,
A.L.
,
Kvam
,
J.M.
et al (
2019
)
Arrestin-independent constitutive endocytosis of GPR125/ADGRA3
.
Ann. N. Y. Acad. Sci.
1456
,
186
199
98
Wang
,
X.-J.
,
Zhang
,
D.-L.
,
Xu
,
Z.-G.
,
Ma
,
M.-L.
,
Wang
,
W.-B.
,
Li
,
L.-L.
et al (
2014
)
Understanding cadherin EGF LAG seven-pass G-type receptors
.
J. Neurochem.
131
,
699
711
99
Lindenmaier
,
L.B.
,
Parmentier
,
N.
,
Guo
,
C.
,
Tissir
,
F.
and
Wright
,
K.M.
(
2019
)
Dystroglycan is a scaffold for extracellular axon guidance decisions
.
eLife
8
,
e42143
100
Formstone
,
C.J.
,
Moxon
,
C.
,
Murdoch
,
J.
,
Little
,
P.
and
Mason
,
I.
(
2010
)
Basal enrichment within neuroepithelia suggests novel function(s) for Celsr1 protein
.
Mol. Cell Neurosci.
44
,
210
222
101
Shima
,
Y.
,
Kengaku
,
M.
,
Hirano
,
T.
,
Takeichi
,
M.
and
Uemura
,
T.
(
2004
)
Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin
.
Dev. Cell
7
,
205
216
102
Bianchi
,
E.
,
Sun
,
Y.
,
Almansa-Ordonez
,
A.
,
Woods
,
M.
,
Goulding
,
D.
,
Martinez-Martin
,
N.
et al (
2021
)
Control of oviductal fluid flow by the G-protein coupled receptor Adgrd1 is essential for murine embryo transit
.
Nat. Commun.
12
,
1251
103
Fischer
,
L.
,
Wilde
,
C.
,
Schöneberg
,
T.
and
Liebscher
,
I.
(
2016
)
Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133)
.
BMC Genomics
17
,
609
104
Bohnekamp
,
J.
and
Schöneberg
,
T.
(
2011
)
Cell adhesion receptor GPR133 couples to Gs protein
.
J. Biol. Chem.
286
,
41912
6
105
Lum
,
A.M.
,
Wang
,
B.B.
,
Beck-Engeser
,
G.B.
,
Li
,
L.
,
Channa
,
N.
and
Wabl
,
M.
(
2010
)
Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer
.
BMC Cancer
10
,
40
106
Fredriksson
,
R.
,
Lagerström
,
M.C.
,
Höglund
,
P.J.
and
Schiöth
,
H.B.
(
2002
)
Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions
.
FEBS Lett.
531
,
407
414
107
LopezJimenez,
N.D
,
Sainz,
E.
,
Cavenagh,
M.M
,
Cruz-Ithier,
M.A
,
Blackwood,
C.A
,
Battey,
J.F
et al
Two novel genes, Gpr113, which encodes a family 2 G-protein-coupled receptor, and Trcg1, are selectively expressed in taste receptor cells
.
Genomics
2005
;
85
:
472
482
.
108
Abe
,
J.
,
Suzuki
,
H.
,
Notoya
,
M.
,
Yamamoto
,
T.
and
Hirose
,
S.
(
1999
)
Ig-Hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that Has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a New subfamily of GPCRs
.
J. Biol. Chem.
274
,
19957
19964
109
Fukuzawa
,
T.
,
Ishida
,
J.
,
Kato
,
A.
,
Ichinose
,
T.
,
Ariestanti
,
D.M.
,
Takahashi
,
T.
et al (
2013
)
Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D
.
PLoS ONE
8
,
e69451
110
Prömel
,
S.
,
Waller-Evans
,
H.
,
Dixon
,
J.
,
Zahn
,
D.
,
Colledge
,
W.H.
,
Doran
,
J.
et al (
2012
)
Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse
.
Dev. Dyn.
241
,
1591
1602
111
Bridges
,
J.P.
,
Safina
,
C.
,
Pirard
,
B.
,
Brown
,
K.
,
Filuta
,
A.
,
Bouhelal
,
R.
et al (
2021
)
Activation of GPR116/ADGRF5 by its tethered agonist requires key amino acids in extracellular loop 2 of the transmembrane region
.
Cell Biol.
112
Tang
,
X.
,
Jin
,
R.
,
Qu
,
G.
,
Wang
,
X.
,
Li
,
Z.
,
Yuan
,
Z.
et al (
2013
)
GPR116, an adhesion G-Protein–Coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway
.
Cancer Res.
73
,
6206
6218
113
Duman
,
J.G.
,
Tu
,
Y.-K.
and
Tolias
,
K.F.
(
2016
)
Emerging roles of BAI adhesion-GPCRs in synapse development and plasticity
.
Neural Plast.
2016
,
8301737
114
Koh
,
J.T.
,
Lee
,
Z.H.
,
Ahn
,
K.Y.
,
Kim
,
J.K.
,
Bae
,
C.S.
,
Kim
,
H.-H.
et al (
2001
)
Characterization of mouse brain-specific angiogenesis inhibitor 1 (BAI1) and phytanoyl-CoA alpha-hydroxylase-associated protein 1, a novel BAI1-binding protein
.
Mol. Brain Res.
87
,
223
237
115
Park
,
D.
,
Tosello-Trampont
,
A.-C.
,
Elliott
,
M.R.
,
Lu
,
M.
,
Haney
,
L.B.
,
Ma
,
Z.
et al (
2007
)
BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module
.
Nature
450
,
430
434
116
Das
,
S.
,
Sarkar
,
A.
,
Ryan
,
K.A.
,
Fox
,
S.
,
Berger
,
A.H.
,
Juncadella
,
I.J.
et al (
2014
)
Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with helicobacter pylori and mediates the recognition and engulfment of human apoptotic gastric epithelial cells
.
FASEB J.
28
,
2214
2224
117
Koh
,
J.T.
,
Kook
,
H.
,
Kee
,
H.J.
,
Seo
,
Y.-W.
,
Jeong
,
B.C.
,
Lee
,
J.H.
et al (
2004
)
Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking αvβ5 integrin
.
Exp. Cell Res.
294
,
172
184
118
Kaur
,
B.
,
Cork
,
S.M.
,
Sandberg
,
E.M.
,
Devi
,
N.S.
,
Zhang
,
Z.
,
Klenotic
,
P.A.
et al (
2009
)
Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-Dependent mechanism
.
Cancer Res.
69
,
1212
1220
119
Zencir
,
S.
,
Ovee
,
M.
,
Dobson
,
M.J.
,
Banerjee
,
M.
,
Topcu
,
Z.
and
Mohanty
,
S.
(
2011
)
Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein
.
Biochem. Biophys. Res. Commun.
411
,
792
797
120
Kakegawa
,
W.
,
Mitakidis
,
N.
,
Miura
,
E.
,
Abe
,
M.
,
Matsuda
,
K.
,
Takeo
,
Y.H.
et al (
2015
)
Anterograde C1ql1 signaling Is required in order to determine and maintain a single-Winner climbing fiber in the mouse cerebellum
.
Neuron
85
,
316
329
121
Bolliger
,
M.F.
,
Martinelli
,
D.C.
and
Sudhof
,
T.C.
(
2011
)
The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins
.
Proc Natl Acad Sci. U S A.
108
,
2534
2539
122
Sigoillot
,
S.M.
,
Iyer
,
K.
,
Binda
,
F.
,
González-Calvo
,
I.
,
Talleur
,
M.
,
Vodjdani
,
G.
et al (
2015
)
The secreted protein C1QL1 and Its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar purkinje cells
.
Cell Rep.
10
,
820
832
123
Purcell
,
R.H.
,
Toro
,
C.
,
Gahl
,
W.A.
and
Hall
,
R.A.
(
2017
)
A disease-associated mutation in the adhesion GPCR BAI2 (ADGRB2) increases receptor signaling activity
.
Hum. Mutat.
38
,
1751
1760
124
Fredriksson
,
R.
,
Gloriam
,
D.E.I.
,
Höglund
,
P.J.
,
Lagerström
,
M.C.
and
Schiöth
,
H.B.
(
2003
)
There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini
.
Biochem. Biophys. Res. Commun.
301
,
725
734
125
Luo
,
R.
,
Jeong
,
S.-J.
,
Jin
,
Z.
,
Strokes
,
N.
,
Li
,
S.
and
Piao
,
X.
(
2011
)
G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination
.
Proc Natl Acad Sci. U S A.
108
,
12925
12930
126
Xu
,
L.
,
Begum
,
S.
,
Hearn
,
J.D.
and
Hynes
,
R.O.
(
2006
)
GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis
.
Proc. Natl Acad. Sci. U.S.A.
103
,
9023
9028
127
Zhu
,
B.
,
Luo
,
R.
,
Jin
,
P.
,
Li
,
T.
,
Oak
,
H.C.
,
Giera
,
S.
et al (
2019
)
GAIN domain-mediated cleavage is required for activation of G protein-coupled receptor 56 (GPR56) by its natural ligands and a small-molecule agonist
.
J. Biol. Chem.
294
,
19246
19254
128
Jin
,
G.
,
Sakitani
,
K.
,
Wang
,
H.
,
Jin
,
Y.
,
Dubeykovskiy
,
A.
,
Worthley
,
D.L.
et al (
2017
)
The G-protein coupled receptor 56, expressed in colonic stem and cancer cells, binds progastrin to promote proliferation and carcinogenesis
.
Oncotarget
8
,
40606
40619
129
Moriguchi
,
T.
,
Haraguchi
,
K.
,
Ueda
,
N.
,
Okada
,
M.
,
Furuya
,
T.
and
Akiyama
,
T.
(
2004
)
DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites
.
Genes Cells
9
,
549
560
130
Stehlik
,
C.
,
Kroismayr
,
R.
,
Dorfleutner
,
A.
,
Binder
,
B.R.
and
Lipp
,
J.
(
2004
)
VIGR - a novel inducible adhesion family G-protein coupled receptor in endothelial cells
.
FEBS Lett.
569
,
149
155
131
Petersen
,
S.C.
,
Luo
,
R.
,
Liebscher
,
I.
,
Giera
,
S.
,
Jeong
,
S.-J.
,
Mogha
,
A.
et al (
2015
)
The adhesion GPCR GPR126 Has distinct, domain-Dependent functions in schwann cell development mediated by interaction with laminin-211
.
Neuron
85
,
755
769
132
Küffer
,
A.
,
Lakkaraju
,
A.K.K.
,
Mogha
,
A.
,
Petersen
,
S.C.
,
Airich
,
K.
,
Doucerain
,
C.
et al (
2016
)
The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6
.
Nature
536
,
464
468
133
Peeters
,
M.C.
,
Fokkelman
,
M.
,
Boogaard
,
B.
,
Egerod
,
K.L.
,
van de Water
,
B.
,
IJzerman
,
A.P.
et al (
2015
)
The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration
.
Cell Signal.
27
,
2579
2588
134
Wilde
,
C.
,
Fischer
,
L.
,
Lede
,
V.
,
Kirchberger
,
J.
,
Rothemund
,
S.
,
Schöneberg
,
T.
et al (
2016
)
The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist
.
FASEB J.
30
,
666
673
135
Yeung
,
J.
,
Adili
,
R.
,
Stringham
,
E.N.
,
Luo
,
R.
,
Vizurraga
,
A.
,
Rosselli-Murai
,
L.K.
et al (
2020
)
GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force
.
Proc. Natl Acad. Sci. U.S.A.
117
,
28275
28286
136
Hsiao
,
C.-C.
,
Chu
,
T.-Y.
,
Wu
,
C.-J.
,
van den Biggelaar
,
M.
,
Pabst
,
C.
,
Hébert
,
J.
et al (
2018
)
The adhesion G protein-Coupled receptor GPR97/ADGRG3 Is expressed in human granulocytes and triggers antimicrobial effector functions
.
Front. Immunol.
9
,
2830
137
Gupte
,
J.
,
Swaminath
,
G.
,
Danao
,
J.
,
Tian
,
H.
,
Li
,
Y.
and
Wu
,
X.
(
2012
)
Signaling property study of adhesion G-protein-coupled receptors
.
FEBS Lett.
586
,
1214
1219
138
Mogha
,
A.
,
Benesh
,
A.E.
,
Patra
,
C.
,
Engel
,
F.B.
,
Schoneberg
,
T.
,
Liebscher
,
I.
et al (
2013
)
Gpr126 functions in schwann cells to control differentiation and myelination via G-Protein activation
.
J. Neurosci.
33
,
17976
17985

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). Open access for this article was enabled by the participation of University of Cambridge in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC.