Saphenous vein (SV) grafts are commonly used to bypass coronary arteries that are diseased due to atherosclerosis. However, the development of intimal hyperplasia in such grafts can lead to patency-threatening stenosis and re-occlusion of the vessel. The proliferation and migration of smooth muscle cells (SMC) play key roles in the development of intimal hyperplasia, and an agent that inhibits both of these processes therefore has therapeutic potential. A prerequisite for SMC proliferation and migration in vivo is degradation of the basement membrane, achieved by secretion of the matrix-degrading gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9. Statins are cholesterol-lowering drugs that also have direct effects on SMC function. Here we report that neointima formation in organ-cultured human SV segments is inhibited by simvastatin, an effect that is associated with reduced MMP-9 activity. Additionally, our work shows that simvastatin not only inhibits proliferation, but importantly also inhibits invasion (migration through a matrix barrier), of cultured human SV SMC. Thus simvastatin treatment appears to inhibit neointima formation as a result of combined inhibition of SMC proliferation and invasion. The potential intracellular mechanisms by which statins affect SMC proliferation and migration, and thus attenuate intimal hyperplasia, are discussed, with particular emphasis on the role of MMP-9.

This content is only available as a PDF.