The epidemic of Type 2 diabetes, and the parallel rising incidence of end-stage renal disease, is progressively increasing worldwide. Kidney disease is one of the major chronic microvascular complications of diabetes, and both metabolic and haemodynamic perturbations participate in its development and progression towards end-stage renal disease. Hypertension and poor metabolic control seem to interact in causing the relentless decline in renal function seen in diabetic patients. Both high circulating glucose levels and increased glomerular capillary pressure act in conjunction in stimulating the different cellular pathways leading to kidney disease. It has been suggested that mechanical forces at the glomerular level may aggravate the metabolic insult by stimulating excessive cellular glucose uptake by up-regulating the facilitative GLUT-1 (glucose transporter-1). We propose the existence of a self-maintaining cellular mechanism whereby a haemodynamic stimulus on glomerular cells induces the up-regulation of GLUT-1, an event followed by greater glucose uptake and activation of intracellular metabolic pathways, resulting in excess TGF-β1 (transforming growth factor-β1) production. TGF-β1, one of the major prosclerotic cytokines in diabetic kidney disease, maintains the up-regulation of GLUT-1, perpetuating a series of cellular events that result, as their ultimate effect, in increased extracellular matrix synthesis and altered permeability of the glomerular filtration barrier. Mechanical and metabolic coupling could represent an important mechanism of injury in the diabetic kidney.

Two hits, one disease: interaction between metabolic and haemodynamic perturbations, and diabetic glomerulopathy

Hypertension is an important contributor to diabetic renal disease, and the interplay between hypertension and renal disease is complex [1,2]: renal impairment contributes to the development and severity of hypertension, whereas high BP (blood pressure) accelerates the course of renal disease. Patients with diabetes and hypertension have a higher risk of end-stage renal failure [ESRD (end-stage renal disease)] than patients with hypertension alone [3]. Raised BP is often paralleled by clinical albuminuria, the earliest manifestation of systemic microvascular damage [4]. In diabetic patients, albuminuria is an early marker of renal microvascular disease and increases the risk of CVD (cardiovascular disease) morbidity and mortality [5]. Therapeutic interventions aiming at reducing albuminuria in diabetic patients are an important goal for both cardiovascular and renal protection [6].

Haemodynamic (glomerular hypertension) and metabolic (hyperglycaemia) perturbations represent the two major determinants that contribute to the development and progression of renal disease in diabetes [711].

The description of the interaction between hypertension and hyperglycaemia in the pathophysiology of diabetic kidney disease was initially made by Hostetter et al. [12,13], who found a hyperglycaemia-mediated altered glomerular capillaries autoregulation that by reducing afferent and, to a much lesser degree, efferent arteriolar tone [12,13] resulted in higher glomerular hydraulic pressure and secondary severe glomerular lesions [12,13]. Under non-pathological conditions, vascular autoregulatory mechanisms protect the glomerular capillaries from changes in systemic arterial BP [14].

The mechanisms at the basis of hyperglycaemia-mediated disruption of capillary vasoregulation are complex. Hyperglycaemia-mediated increase in vascular nitric oxide [15] and TGF-β1 (transforming growth factor-β1) [16,17] production have been implicated in vasodilation of both afferent and efferent glomerular arterioles, the latter through the production of reactive oxygen species [18]. Hyperglycaemia also activates the local tissue RAAS (renin–angiotensin–aldosterone system) [19] by local excess production of ang-2 (angiotensin-2). In diabetes, the documented higher sensitivity of the efferent (versus the afferent) glomerular arteriole to the vasoconstrictive action of ang-2 contributes to the imbalance in arteriolar tone, which results in higher glomerular capillary pressure [17,20]. As a result, in diabetes, a disproportionate systemic pressure is transmitted to the glomerular circulation, resulting in mechanical elongation of glomerular cells and activation of the cellular mechanisms that lead to glomerular damage [21].

Importantly, ang-2 directly stimulates the production of TGF-β1 [16,17], which is one of the most important cytokines that participate in the pathogenesis of diabetic glomerulopathy [22]. In the kidney, TGF-β1 stimulates the production of other growth factors such as VEGF (vascular endothelial growth factor) [23], TGF-β1 itself [22] and CTGF (connective tissue growth factor) [24]. The excessive production of TGF-β1 and the activation of TGF-β1-mediated pathways are involved in the steps that progressively lead to glomerulosclerosis and renal interstitial fibrosis [22,25,26].

In the experimental animal model of hypertension, such as the DSS rat (Dahl salt-sensitive rat) [27,28] or the one-kidney 5/6 nephrectomy model [29], which are specifically characterized by an impairment of glomerular capillaries vasoregulation, intraglomerular pressure results in increased glomerular extracellular matrix deposition and glomerulosclerosis [30]. By contrast, in the SHR (spontaneously hypertensive rat), glomerular damage is delayed by increased pre-glomerular arteriolar resistance that counteracts the effect of increased systemic BP transmission on the glomerular capillaries [31]. If pre-glomerular vasoregulation in the SHR is impaired by uninephrectomy or diabetes, haemodynamic perturbations result in an earlier and significant increase in albuminuria, increased TGF-β1, mesangial expansion and glomerulosclerosis [1,32].

Many of the molecules involved in the pathophysiology of glomerular capillary damage in diabetes affect the expression of the facilitative glucose transporter GLUT-1 (glucose transporter-1): for example ang-2 and TGF-β1 stimulate GLUT-1 protein expression and basal glucose uptake in mesangial cells [3336], and studies have proposed a link between GLUT-1 up-regulation in diabetes and glomerular damage.

Seminal work from Heilig et al. [37] has shown that primary GLUT-1 overexpression in mesangial cells cultured in ‘normal’ glucose concentrations, resulted in both increased basal cellular glucose uptake and extracellular matrix protein expression. Conversely, studies in which GLUT-1 expression was inhibited in mesangial cells in vitro showed a reduction in basal glucose uptake and glucose-mediated extracellular matrix production [38].

To gain further insights into the haemodynamic-mediated glomerular lesions, we asked whether haemodynamic forces might interact with GLUT-1 expression and cellular glucose uptake.

We found that mechanical stretch applied to human mesangial cells in vitro significantly up-regulated GLUT-1 protein expression and basal glucose uptake, effects that were prevented by neutralization of the action of TGF-β1 [34].

We then studied whether GLUT-1 expression differed in an animal model of both systemic and glomerular hypertension, the DSS rat on a high-salt diet [27,28], as compared with an animal model of systemic hypertension with normal capillary pressure, namely the young SHR [31].

Hypertensive DSS rats treated with a high-salt diet showed an increase in glomerular GLUT-1 expression as compared with normotensive DSS rats [34]. By contrast, in the young SHR, GLUT-1 expression was similar to its normotensive control, the WKY (Wistar Kyoto) rat [34].

The increased glomerular GLUT-1 up-regulation in the hypertensive DSS rats was paralleled by an increase in renal TGF-β1 expression when compared with their DSS normotensive controls, whereas TGF-β1 expression was similar in the young SHR and its normotensive control [34].

The mechanical-GLUT-1-mediated increase in cellular glucose transport would activate different intracellular metabolic pathways such as the polyol and hexosamine pathway, increase the production of advanced glycation end-products, activate protein kinase C and p38 MAPK (mitogen-activated protein kinase) and promote an increase in oxidative stress [39]. These pathways have been linked to TGF-β1 up-regulation, increased glomerulosclerosis and progressive impairment of glomerular function [4047].

Further, stretch-induced up-regulation of local ang-2 and the angiotensin type-1 receptor [48] will lead to activation of TGF-β1-mediated GLUT-1 up-regulation, thus triggering a vicious cycle resulting in higher cellular glucose uptake [33,49].

In line with these observations, studies have described a greater abundance of renal cortical GLUT-1 in streptozotocin-induced diabetic rats [50,51].

The important role of TGF-β1 as a common mediator of the haemodynamic and metabolic-mediated glomerular alterations [44,52] has clearly highlighted the importance of this cytokine in the pathophysiology of diabetic kidney disease [22], and it has been shown that any intervention that by improving metabolic control and by controlling hypertension leads to down-regulation of TGF-β1 would be crucial in the treatment of diabetic nephropathy [53,54].

Other cytokines such as MCP-1 (monocyte chemoattractant protein-1), a key inflammatory mediator in the pathogenesis of nephropathy, have also been implicated in matrix accumulation and diabetic nephropathy [55], and it is of interest to note that MCP-1 is increased in angiotensin-induced hypertension [56].

Studies in experimental animal models of diabetes in which either TGF-β1 or MCP-1 action was inhibited resulted in an amelioration of diabetes-mediated renal disease [57,58]. Despite these promising results, these agents retain parallel effects on the modulation of the immune system, which will make their future use as a potential treatment for diabetic kidney disease unlikely.

Another important mediator of the development of diabetic nephropathy is VEGF. VEGF is a growth factor that promotes endothelial cell proliferation, differentiation and survival and mediates endothelium-dependent vasodilatation and permeability [59]. In animal studies, inhibition of VEGF has been shown to have beneficial effects on diabetes-induced renal disease, which suggests that VEGF has a central role in the pathophysiology of diabetic nephropathy [60,61]. Indeed VEGF expression has been implicated in the regulation of the integrity of the glomerular filtration barrier such as disruption and thickening of the glomerular basement membrane, podocytes slit pore density and nephrin expression, all phenomena related to the increased albuminuria seen in diabetes [61].

The angiopoietin/Tie-2 receptor system has also been implicated in the pathogenesis of diabetic glomerulopathy [62,63]. Data in humans have described, in Type 2 diabetic patients, elevated circulating and angiopoietin-2 levels [64]. Indeed in vitro experiments have shown that glucose and mechanical stretch stimulates angiopoietin-2 expression in endothelial cells [65,66], providing one potential mechanism for angiopoietin-2 up-regulation in diabetic nephropathy. In experimental animal models of Type 1 diabetes, renal angiopoietin-1 and angiopoietin-2 are initially up-regulated, whereas in the long term only angiopoietin-2 expression remains elevated, causing an inversion of the normal angiopoietin-1/angiopoietin-2 ratio (where angiopoietin 1>angiopoietin 2) seen in normal physiology [62]. Collectively, it seems that a decreased ratio of angiopoietin-1 to angiopoietin-2 might play a role in the pathophysiology of diabetic nephropathy. Recent work has shown that primary angiopoietin-2 overexpression in glomeruli results in albuminuria and nephrin down-regulation as seen in diabetic glomerulopathy [67].

Conclusion

As both metabolic and haemodynamic perturbations represent important determinants for the pathogenesis of diabetic nephropathy, a multifactorial intervention in diabetic patients is needed for the prevention and delay of renal vascular chronic complications.

Importantly, the STENO-2 study (conducted in Type 2 diabetic patients) demonstrated that a more aggressive treatment of metabolic and haemodynamic clinical parameters resulted in a significantly lower risk of micro- and macro-vascular diabetic complications [68].

Clearly, the epidemic of diabetic microvascular complications necessitates the use of multiple treatments to reduce renal risk. The goal of future treatments, therefore, is metabolic and BP control combined with maximized end-organ protection.

Molecular Mechanisms of Glucolipotoxicity in Diabetes: A Biochemical Society Focused Meeting held at University College Dublin, Ireland, 25–26 March 2008. Organized and Edited by Tony Corfield (Bristol, U.K.), Mark Holness (Barts and the London School of Medicine and Dentistry, U.K.) and Philip Newsholme (University College Dublin, Ireland).

Abbreviations

     
  • ang-2

    angiotensin-2

  •  
  • BP

    blood pressure

  •  
  • DSS

    rat, Dahl salt-sensitive rat

  •  
  • GLUT-1

    glucose transporter-1

  •  
  • MCP-1

    monocyte chemoattractant protein-1

  •  
  • SHR

    spontaneously hypertensive rat

  •  
  • TGF-β1

    transforming growth factor-β1

  •  
  • VEGF

    vascular endothelial growth factor

References

References
1
Cooper
M.E.
Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy
Diabetologia
2001
, vol. 
44
 (pg. 
1957
-
1972
)
2
Gnudi
L.
Thomas
S.M.
Viberti
G.
Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism
J. Am. Soc. Nephrol.
2007
, vol. 
18
 (pg. 
2226
-
2232
)
3
Jamerson
K.A.
Preventing chronic kidney disease in special populations
Am. J. Hypertens.
2005
, vol. 
18
 (pg. 
106S
-
111S
)
4
Deckert
T.
Feldt-Rasmussen
B.
Borch-Johnsen
K.
Jensen
T.
Kofoed-Enevoldsen
A.
Albuminuria reflects widespread vascular damage: the STENO hypothesis
Diabetologia
1989
, vol. 
32
 (pg. 
219
-
226
)
5
De Zeeuw
D.
Albuminuria, not only a cardiovascular/renal risk marker, but also a target for treatment?
Kidney Int.
2004
, vol. 
66
 
Suppl. 92
(pg. 
S2
-
S6
)
6
Ruggenenti
P.
Schieppati
A.
Remuzzi
G.
Progression, remission, regression of chronic renal diseases
Lancet
2001
, vol. 
357
 (pg. 
1601
-
1608
)
7
The Diabetes Control and Complications Trial Research Group
The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus
N. Engl. J. Med.
1993
, vol. 
329
 (pg. 
977
-
986
)
8
Adler
A.I.
Stratton
I.M.
Neil
H.A.
Yudkin
J.S.
Matthews
D.R.
Cull
C.A.
Wright
A.D.
Turner
R.C.
Holman
R.R.
Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study
Br. Med. J.
2000
, vol. 
321
 (pg. 
412
-
419
)
9
Hostetter
T.H.
Mechanisms of diabetic nephropathy
Am. J. Kidney Dis.
1994
, vol. 
23
 (pg. 
188
-
192
)
10
Stratton
I.M.
Adler
A.I.
Neil
H.A.
Matthews
D.R.
Manley
S.E.
Cull
C.A.
Hadden
D.
Turner
R.C.
Holman
R.R.
Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study
Br. Med. J.
2000
, vol. 
321
 (pg. 
405
-
412
)
11
Lewis
J.B.
Berl
T.
Bain
R.P.
Rohde
R.D.
Lewis
E.J.
Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy
Am. J. Kidney Dis.
1999
, vol. 
34
 (pg. 
809
-
817
)
12
Hostetter
T.H.
Troy
J.L.
Brenner
B.M.
Glomerular hemodynamics in experimental diabetes mellitus
Kidney Int.
1981
, vol. 
19
 (pg. 
410
-
415
)
13
Hostetter
T.H.
Rennke
H.G.
Brenner
B.M.
The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies
Am. J. Med.
1982
, vol. 
72
 (pg. 
375
-
380
)
14
Ito
S.
Abe
K.
Contractile properties of afferent and efferent arterioles
Clin. Exp. Pharmacol. Physiol.
1997
, vol. 
24
 (pg. 
532
-
535
)
15
De Vriese
A.S.
Stoenoiu
M.S.
Elger
M.
Devuyst
O.
Vanholder
R.
Kriz
W.
Lameire
N.H.
Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide
Kidney Int.
2001
, vol. 
60
 (pg. 
202
-
210
)
16
Kagami
S.
Border
W.A.
Miller
D.E.
Noble
N.A.
Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells
J. Clin. Invest.
1994
, vol. 
93
 (pg. 
2431
-
2437
)
17
Raij
L.
The pathophysiologic basis for blocking the renin–angiotensin system in hypertensive patients with renal disease
Am. J. Hypertens.
2005
, vol. 
18
 (pg. 
95S
-
99S
)
18
Sharma
K.
Cook
A.
Smith
M.
Valancius
C.
Inscho
E.W.
TGF-β impairs renal autoregulation via generation of ROS
Am. J. Physiol. Renal Physiol.
2005
, vol. 
288
 (pg. 
F1069
-
F1077
)
19
Anderson
S.
Vora
J.P.
Current concepts of renal hemodynamics in diabetes
J. Diabetes Complications
1995
, vol. 
9
 (pg. 
304
-
307
)
20
Maddox
D.A.
Brenner
B.M.
Brenner
B.M.
Rector
F.C.
Jr
Glomerular ultrafiltration
The Kidney
2000
Philadelphia
W.B. Saunders and Co.
(pg. 
319
-
374
)
21
Arima
S.
Ito
S.
The mechanisms underlying altered vascular resistance of glomerular afferent and efferent arterioles in diabetic nephropathy
Nephrol. Dial. Transplant.
2003
, vol. 
18
 (pg. 
1966
-
1969
)
22
Ziyadeh
F.N.
Mediators of diabetic renal disease: the case for TGF-β as the major mediator
J. Am. Soc. Nephrol.
2004
, vol. 
15
 
Suppl. 1
(pg. 
S55
-
S57
)
23
Wang
L.
Kwak
J.H.
Kim
S.I.
He
Y.
Choi
M.E.
TGF-β1 stimulates vascular endothelial growth factor (VEGF) 164 via mitogen-activated protein kinase kinase 3 (MKK3)-p38α and p38δ MAPK dependent pathway in murine mesangial cells
J. Biol. Chem.
2004
, vol. 
279
 (pg. 
33213
-
33219
)
24
Riser
B.L.
Cortes
P.
Connective tissue growth factor and its regulation: a new element in diabetic glomerulosclerosis
Renal Failure
2001
, vol. 
23
 (pg. 
459
-
470
)
25
Amemiya
T.
Sasamura
H.
Mifune
M.
Kitamura
Y.
Hirahashi
J.
Hayashi
M.
Saruta
T.
Vascular endothelial growth factor activates MAP kinase and enhances collagen synthesis in human mesangial cells
Kidney Int.
1999
, vol. 
56
 (pg. 
2055
-
2063
)
26
Chen
S.
Kasama
Y.
Lee
J.S.
Jim
B.
Marin
M.
Ziyadeh
F.N.
Podocyte-derived vascular endothelial growth factor mediates the stimulation of α3(IV) collagen production by transforming growth factor-β1 in mouse podocytes
Diabetes
2004
, vol. 
53
 (pg. 
2939
-
2949
)
27
Azar
S.
Limas
C.
Iway
J.
Weller
D.
Single nephron dynamics during high sodium intake and early hypertension in Dahl rats
Jpn. Heart J.
1979
, vol. 
20
 
Suppl. 1
(pg. 
138
-
140
)
28
Takenaka
T.
Forster
H.
De Micheli
A.
Epstein
M.
Impaired myogenic responsiveness of renal microvessels in Dahl salt-sensitive rats
Circ. Res.
1992
, vol. 
71
 (pg. 
471
-
480
)
29
Faraj
A.H.
Morley
A.R.
Remnant kidney pathology after five-sixth nephrectomy in rat. I. A biochemical and morphological study
APMIS
1992
, vol. 
100
 (pg. 
1097
-
1105
)
30
Hayakawa
H.
Raij
L.
Nitric oxide synthase activity and renal injury in genetic hypertension
Hypertension
1998
, vol. 
31
 (pg. 
266
-
270
)
31
Arendshorst
W.J.
Autoregulation of renal blood flow in spontaneously hypertensive rats
Circ. Res.
1979
, vol. 
44
 (pg. 
344
-
349
)
32
Raij
L.
Azar
S.
Keane
W.F.
Role of hypertension in progressive glomerular immune injury
Hypertension
1985
, vol. 
7
 (pg. 
398
-
404
)
33
Inoki
K.
Haneda
M.
Maeda
S.
Koya
D.
Kikkawa
R.
TGF-β1 stimulates glucose uptake by enhancing GLUT1 expression in mesangial cells
Kidney Int.
1999
, vol. 
55
 (pg. 
1704
-
1712
)
34
Gnudi
L.
Viberti
G.
Raij
L.
Rodriguez
V.
Burt
D.
Cortes
P.
Hartley
B.
Thomas
S.
Maestrini
S.
Gruden
G.
GLUT-1 overexpression: link between hemodynamic and metabolic factors in glomerular injury?
Hypertension
2003
, vol. 
42
 (pg. 
19
-
24
)
35
Zhang
J.
Liu
Z.
Liu
H.
Li
Y.
Li
L.
Regulation of the expression and function of glucose transporter-1 by TGF-β1 and high glucose in mesangial cells
Chin. Med. J. (Engl.)
2000
, vol. 
113
 (pg. 
508
-
513
)
36
Nose
A.
Mori
Y.
Uchiyama-Tanaka
Y.
Kishimoto
N.
Maruyama
K.
Matsubara
H.
Iwasaka
T.
Regulation of glucose transporter (GLUT1) gene expression by angiotensin II in mesangial cells: involvement of HB-EGF and EGF receptor transactivation
Hypertens. Res.
2003
, vol. 
26
 (pg. 
67
-
73
)
37
Heilig
C.W.
Concepcion
L.A.
Riser
B.L.
Freytag
S.O.
Zhu
M.
Cortes
P.
Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype
J. Clin. Invest.
1995
, vol. 
96
 (pg. 
1802
-
1814
)
38
Heilig
C.W.
Kreisberg
J.I.
Freytag
S.
Murakami
T.
Ebina
Y.
Guo
L.
Heilig
K.
Loberg
R.
Qu
X.
Jin
Y.
, et al. 
Antisense GLUT-1 protects mesangial cells from glucose induction of GLUT-1 and fibronectin expression
Am. J. Physiol. Renal Physiol.
2001
, vol. 
280
 (pg. 
F657
-
F666
)
39
Brownlee
M.
Biochemistry and molecular cell biology of diabetic complications
Nature
2001
, vol. 
414
 (pg. 
813
-
820
)
40
King
G.L.
Kunisaki
M.
Nishio
Y.
Inoguchi
T.
Shiba
T.
Xia
P.
Biochemical and molecular mechanisms in the development of diabetic vascular complications
Diabetes
1996
, vol. 
45
 
Suppl. 3
(pg. 
S105
-
S108
)
41
Kolm-Litty
V.
Sauer
U.
Nerlich
A.
Lehmann
R.
Schleicher
E.D.
High glucose induced transforming growth factor β1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cell
J. Clin. Invest.
1998
, vol. 
101
 (pg. 
160
-
169
)
42
Adhikary
L.
Chow
F.
Nikolic-Paterson
D.J.
Stambe
C.
Dowling
J.
Atkins
R.C.
Tesch
G.H.
Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy
Diabetologia
2004
, vol. 
47
 (pg. 
1210
-
1222
)
43
Burt
D.J.
Gruden
G.
Thomas
S.M.
Tutt
P.
Dell'Anna
C.
Viberti
G.C.
Gnudi
L.
p38 mitogen-activated protein kinase mediates hexosamine-induced TGFβ1 mRNA expression in human mesangial cells
Diabetologia
2003
, vol. 
46
 (pg. 
531
-
537
)
44
Gruden
G.
Zonca
S.
Hayward
A.
Thomas
S.
Maestrini
S.
Gnudi
L.
Viberti
G.C.
Mechanical stretch-induced fibronectin and transforming growth factor-β1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent
Diabetes
2000
, vol. 
49
 (pg. 
655
-
661
)
45
Igarashi
M.
Wakasaki
H.
Takahara
N.
Ishii
H.
Jiang
Z.Y.
Yamauchi
T.
Kuboki
K.
Meier
M.
Rhodes
C.J.
King
G.L.
Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways
J. Clin. Invest.
1999
, vol. 
103
 (pg. 
185
-
195
)
46
Koya
D.
King
G.L.
Protein kinase C activation and the development of diabetic complications
Diabetes
1998
, vol. 
47
 (pg. 
859
-
866
)
47
Henry
D.N.
Busik
J.V.
Brosius
F.C.
III
Heilig
C.W.
Glucose transporters control gene expression of aldose reductase, PKCα, and GLUT1 in mesangial cells in vitro
Am. J. Physiol.
1999
, vol. 
277
 (pg. 
F97
-
F104
)
48
Becker
B.N.
Yasuda
T.
Kondo
S.
Vaikunth
S.
Homma
T.
Harris
R.C.
Mechanical stretch/relaxation stimulates a cellular rennin–angiotensin system in cultured rat mesangial cells
Exp. Nephrol.
1998
, vol. 
6
 (pg. 
57
-
66
)
49
Weigert
C.
Brodbeck
K.
Klopfer
K.
Haring
H.U.
Schleicher
E.D.
Angiotensin II induces human TGF-β1 promoter activation: similarity to hyperglycaemia
Diabetologia
2002
, vol. 
45
 (pg. 
890
-
898
)
50
D'Agord
S.B.
Lacchini
S.
Bertoluci
M.C.
Irigoyen
M.C.
Machado
U.F.
Schmid
H.
Increased renal GLUT1 abundance and urinary TGF-β1 in streptozotocin-induced diabetic rats: implications for the development of nephropathy complicating diabetes
Horm. Metab. Res.
2001
, vol. 
33
 (pg. 
664
-
669
)
51
D'Agord
S.B.
Lacchini
S.
Bertoluci
M.C.
Irigoyen
M.C.
Machado
U.F.
Schmid
H.
Impact of renal denervation on renal content of GLUT1, albuminuria and urinary TGF-β1 in streptozotocin-induced diabetic rats
Auton. Neurosci.
2003
, vol. 
104
 (pg. 
88
-
94
)
52
Daniels
M.C.
Kansal
P.
Smith
T.M.
Paterson
A.J.
Kudlow
J.E.
McClain
D.A.
Glucose regulation of transforming growth factor-α expression is mediated by products of the hexosamine biosynthesis pathway
Mol. Endocrinol.
1993
, vol. 
7
 (pg. 
1041
-
1048
)
53
Cao
Z.
Cooper
M.E.
Wu
L.L.
Cox
A.J.
Jandeleit-Dahm
K.
Kelly
D.J.
Gilbert
R.E.
Blockade of the rennin–angiotensin and endothelin systems on progressive renal injury
Hypertension
2000
, vol. 
36
 (pg. 
561
-
568
)
54
Perico
N.
Remuzzi
G.
Angiotensin II receptor antagonists and treatment of hypertension and renal disease
Curr. Opin. Nephrol. Hypertens.
1998
, vol. 
7
 (pg. 
571
-
578
)
55
Giunti
S.
Tesch
G.H.
Pinach
S.
Burt
D.J.
Cooper
M.E.
Cavallo-Perin
P.
Camussi
G.
Gruden
G.
Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells
Diabetologia
2008
, vol. 
51
 (pg. 
198
-
207
)
56
Kato
S.
Luyckx
V.A.
Ots
M.
Lee
K.W.
Ziai
F.
Troy
J.L.
Brenner
B.M.
Mackenzie
H.S.
Renin–angiotensin blockade lowers MCP-1 expression in diabetic rats
Kidney Int.
1999
, vol. 
56
 (pg. 
1037
-
1048
)
57
Ziyadeh
F.N.
Hoffman
B.B.
Han
D.C.
Iglesias-De La Cruz
M.C.
Hong
S.W.
Isono
M.
Chen
S.
McGowan
T.A.
Sharma
K.
Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice
Proc. Natl. Acad. Sci. U.S.A.
2000
, vol. 
97
 (pg. 
8015
-
8020
)
58
Chow
F.Y.
Nikolic-Paterson
D.J.
Ozols
E.
Atkins
R.C.
Rollin
B.J.
Tesch
G.H.
Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice
Kidney Int.
2006
, vol. 
69
 (pg. 
73
-
80
)
59
Ferrara
N.
Gerber
H.P.
LeCouter
J.
The biology of VEGF and its receptors
Nat. Med.
2003
, vol. 
9
 (pg. 
669
-
676
)
60
De Vriese
A.S.
Tilton
R.G.
Elger
M.
Stephan
C.C.
Kriz
W.
Lameire
N.H.
Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes
J. Am. Soc. Nephrol.
2001
, vol. 
12
 (pg. 
993
-
1000
)
61
Sung
S.H.
Ziyadeh
F.N.
Wang
A.
Pyagay
P.E.
Kanwar
Y.S.
Chen
S.
Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice
J. Am. Soc. Nephrol.
2006
, vol. 
17
 (pg. 
3093
-
3104
)
62
Rizkalla
B.
Forbes
J.M.
Cao
Z.
Boner
G.
Cooper
M.E.
Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: role of the renin–angiotensin system
J. Hypertens.
2005
, vol. 
23
 (pg. 
153
-
164
)
63
Ichinose
K.
Maeshima
Y.
Yamamoto
Y.
Kinomura
M.
Hirokoshi
K.
Kitayama
H.
Takazawa
Y.
Sugiyama
H.
Yamasaki
Y.
Agata
N.
Makino
H.
2-(8-Hydroxy-6-methoxy-1-oxo-1H-2-benzopyran-3-yl) propionic acid, an inhibitor of angiogenesis, ameliorates renal alterations in obese type 2 diabetic mice
Diabetes
2006
, vol. 
55
 (pg. 
1232
-
1242
)
64
Lim
H.S.
Lip
G.Y.
Blann
A.D.
Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis
Atherosclerosis
2005
, vol. 
180
 (pg. 
113
-
118
)
65
Yao
D.
Taguchi
T.
Matsumura
T.
Pestell
R.
Edelstein
D.
Giardino
I.
Suske
G.
Rabbani
N.
Thornalley
P.J.
Sarthy
V.P.
, et al. 
High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A
J. Biol. Chem.
2007
, vol. 
282
 (pg. 
31038
-
31045
)
66
Chang
H.
Wang
B.W.
Kuan
P.
Shyu
K.G.
Cyclical mechanical stretch enhances angiopoietin-2 and Tie2 receptor expression in cultured human umbilical vein endothelial cells
Clin. Sci.
2003
, vol. 
104
 (pg. 
421
-
428
)
67
Davis
B.
Dei
C.A.
Long
D.A.
White
K.E.
Hayward
A.
Ku
C.H.
Woolf
A.S.
Bilous
R.
Viberti
G.
Gnudi
L.
Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia
J. Am. Soc. Nephrol.
2007
, vol. 
18
 (pg. 
2320
-
2329
)
68
Gaede
P.
Vedel
P.
Larsen
N.
Jensen
G.V.
Parving
H.H.
Pedersen
O.
Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes
N. Engl. J. Med.
2003
, vol. 
348
 (pg. 
383
-
393
)