RAF (rapidly accelerated fibrosarcoma) Ser/Thr kinases (ARAF, BRAF, and CRAF) link the RAS (rat sarcoma) protein family with the MAPK (mitogen-activated protein kinase) pathway and control cell growth, differentiation, development, aging, and tumorigenesis. Their activity is specifically modulated by protein–protein interactions, post-translational modifications, and conformational changes in specific spatiotemporal patterns via various upstream regulators, including the kinases, phosphatase, GTPases, and scaffold and modulator proteins. Dephosphorylation of Ser-259 (CRAF numbering) and dissociation of 14-3-3 release the RAF regulatory domains RAS-binding domain and cysteine-rich domain for interaction with RAS-GTP and membrane lipids. This, in turn, results in RAF phosphorylation at Ser-621 and 14-3-3 reassociation, followed by its dimerization and ultimately substrate binding and phosphorylation. This review focuses on structural understanding of how distinct binding partners trigger a cascade of molecular events that induces RAF kinase activation.

Introduction

The discovery of the viral oncogene v-raf from the transforming murine retrovirus 3611-MSV in 1983 [1] paved the way for the discovery of a cellular homolog CRAF in 1985 [2] and soon after its paralogs ARAF [3] and BRAF [4]. Evolutionary conservation across different species, including worms (Lin-45) [5] and flies (Draf) [6], unequivocally indicates the biological importance of RAF (rapidly accelerated fibrosarcoma) kinases (Figure 1). Lin-45 encodes a BRAF ortholog that is necessary for larval viability, fertility, and induction of vulval cell fates [7]. Draf plays an important role in early embryogenesis [6]. The three human RAF paralogs regulate a large number of biochemical processes, including survival, proliferation, differentiation, stress responses, and apoptosis [813]. RAF kinases constitute a small family of serine/threonine kinases, which control evolutionarily conserved pathways and have essential roles during development [1416]. Thus, it is not surprising that their dysregulation is associated with progression of a variety of human cancers [1619], pathogenesis of developmental disorders including Noonan, LEOPARD, and cardiofaciocutaneous syndromes [20,21], and cardiovascular diseases, such as pulmonary arterial hypertension and heart failure [22].

Evolutionary conservation of RAF family members.

Figure 1.
Evolutionary conservation of RAF family members.

Multiple amino acid sequence alignment of RAF family members from different organisms (Hs, Homo sapiens; Pa, Pongo abelii; Ss, Sus scrofa; Mm, Mus musculus; Bt, Bos taurus; Gg, Gallus gallus; Xl, Xenopus laevis; Dr, Danio rerio; Dm, Drosophila melanogaster; Ca, Caenorhabditis elegans) illustrates selected regions extracted from this figure. Red amino acids are involved in protein interaction, whereas blue amino acids contact membranes.

Figure 1.
Evolutionary conservation of RAF family members.

Multiple amino acid sequence alignment of RAF family members from different organisms (Hs, Homo sapiens; Pa, Pongo abelii; Ss, Sus scrofa; Mm, Mus musculus; Bt, Bos taurus; Gg, Gallus gallus; Xl, Xenopus laevis; Dr, Danio rerio; Dm, Drosophila melanogaster; Ca, Caenorhabditis elegans) illustrates selected regions extracted from this figure. Red amino acids are involved in protein interaction, whereas blue amino acids contact membranes.

Works from many laboratories have shown that RAF kinases are integral elements of the RAS–MAPK pathway, which is involved in different signaling pathways [2227]. Activation of RAF kinases at the plasma membrane by RAS [1,2832], together with the identification of their substrates MEK1/2 (MAPK/ERK kinase 1/2) [33] has provided the missing link between growth factor signals and MAPK cascade activation [34]. The activities of RAF kinases toward MEK differ widely, with BRAF being the strongest MEK activator, followed by CRAF and ARAF [3537]. These proteins obviously underlay different regulatory mechanisms, including binding to membrane-associated RAS proteins, phosphorylation, and dephosphorylation along with homodimerization and heterodimerization [34,35,3841]. These and other events collectively result in RAF kinase activation [42].

Despite the long history, investigations of the fundamental mechanisms of RAF kinase activation have substantially lagged far behind the development of kinase inhibitors and inhibitor technologies. In this review, we summarize emerging mechanistic insights gained from structural, biochemical, and computational studies on functional interaction networks. Human RAF paralogs share evolutionarily conserved regions (Figure 1), which are functionally split into a regulatory N-terminal half, comprising a RAS-binding domain, a cysteine-rich domain, and a serine/threonine-rich region and a catalytic C-terminal half representing the kinase domain (Figure 2A). In the following, we will discuss the structure–function relationships of individual domains and motifs and their interactions with membrane lipids, RAS, 14-3-3, MEK1/2, and KSR1/2 (kinase suppressor of RAS 1/2).

Structural fingerprints for RAF kinase interactions with RAS and the membrane lipids.

Figure 2.
Structural fingerprints for RAF kinase interactions with RAS and the membrane lipids.

Critical residues involved in protein interaction and membrane binding are depicted in red and blue, respectively. CR encompassing amino acids are shown at the upper panel. (A) Domain organization of RAF kinases with the typical conserved regions (CR1, CR2, and CR3) along with the functional domains, including the RBD, the CRD, and the kinase domain (KD). (B) Overlaid RBD structures of the RAF paralogs and the amino acids interacting with RAS and the membrane. BRAF RBD exhibits negative charges in positions 202 and 204. RAF RBD encompassing amino acids are boxed. (C) CRD structure of CRAF and the membrane-binding amino acids. RAF CRD encompassing amino acids are boxed. (D) 14-3-3 δ/ζ structure in complex with the CR2 peptide of CRAF along with interacting amino acids of CRAF and 14-3-3 paralogs. (E) Overlaid structures of CRAF and BRAF kinase domains’ along with MEK-binding amino acids. (F) CC-SAM domain of KSR1 in complex with RBS domain of BRAF.

Figure 2.
Structural fingerprints for RAF kinase interactions with RAS and the membrane lipids.

Critical residues involved in protein interaction and membrane binding are depicted in red and blue, respectively. CR encompassing amino acids are shown at the upper panel. (A) Domain organization of RAF kinases with the typical conserved regions (CR1, CR2, and CR3) along with the functional domains, including the RBD, the CRD, and the kinase domain (KD). (B) Overlaid RBD structures of the RAF paralogs and the amino acids interacting with RAS and the membrane. BRAF RBD exhibits negative charges in positions 202 and 204. RAF RBD encompassing amino acids are boxed. (C) CRD structure of CRAF and the membrane-binding amino acids. RAF CRD encompassing amino acids are boxed. (D) 14-3-3 δ/ζ structure in complex with the CR2 peptide of CRAF along with interacting amino acids of CRAF and 14-3-3 paralogs. (E) Overlaid structures of CRAF and BRAF kinase domains’ along with MEK-binding amino acids. (F) CC-SAM domain of KSR1 in complex with RBS domain of BRAF.

RAS-binding domains

Signal transduction implies physical association of RAS proteins with their effectors and activation of individual signaling pathways. Effectors specifically interact with the active, GTP-bound form of RAS proteins. These interactions occur usually in response to extracellular signals and link them to downstream signaling pathways in all eukaryotes [26,43]. Effectors act as protein or lipid kinases, phospholipase, GEFs (guanine nucleotide exchange), GAPs (GTPase-activating proteins), and scaffold proteins [4447]. There are two major groups of effectors: one contains RAS-binding domains (RBDs) and the other RAS association (RA) domains [48,49]. Mining in the UniProt database led us to the identification of 118 distinct human proteins containing RBDs and RA domains (Rezaei Adariani, Dvorsky, et al. unpublished data). Notably, both types of domains utilize critical determinants for the interaction with different RAS proteins, particularly the intermolecular β-sheets (see next section) [50]. Structural studies have provided deep insights into the binding modes and interaction specificities [5153]. Detailed analysis of 16 RAS structures in complex with different RBD and RA-domain effectors has revealed that, in spite of low sequence similarity, their mode of interaction is well conserved [50]. Yet, the precise mechanism through which effector association with RAS proteins results in their activation is still unclear. It is, however, generally accepted that RAS proteins participate directly in the activation of their downstream effectors and do not simply mediate their recruitment to specific sites at the membrane [54].

A striking feature of RAS proteins is the plethora of possible interactions with a large number of effectors. Notably, RAS proteins change their conformation mainly at two highly mobile regions, designated as switch I (aa 30–40) and switch II (aa 60–68) [53,55]. Mainly in the GTP-bound form, the switch regions of the RAS proteins provide a platform for the association with effector proteins, especially through their RBDs or RA domains. This interaction appears to be a prerequisite for effector activation [49,50,5658]. However, CRAF RBD and RALGDS (Ral guanine nucleotide dissociation stimulator)-RA domains share a similar ubiquitin-like fold and contact the switch I region via a similar binding mode. In contrast, PI3Kα (phosphoinositide 3-kinase α)-RBD, RASSF5 (RAS association domain-containing protein 5)-RA, and PLCε (phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon)-RA domains do not share sequence and structural similarity, but commonly associate with the switch regions, especially switch I [5963].

RAF–RBD interactions with RAS proteins

Major studies were carried out in the late 1980s and 1990s with regard to RAS interaction with its effectors (reviewed in refs [52,6469]). An interaction study of CRAF association with RRAS1 led to the identification of the first RBD (aa 51–131) [70]. Soon after CRAF binding to HRAS was reported to be GTP-dependent [2831,71]. Within a year, the sites of interaction between HRAS and CRAF were determined [72] along with quantitative analysis of the binding affinity between them [73]. All of this occurred before the first structure revealed the CRAF RBD structure and its mode of binding to a RAS family member, RAP1A (RAS-related protein 1A) [74]. CRAF RBD consists of a five-strand mixed β-sheet (β1– β5) with an interrupted α-helix (α1) and two additional 310-helices (α2 and α3) (Figure 2B). Consistent with an earlier NMR determination [51], the RBD of CRAF has an ubiquitin fold (β1, β2, α1, β3, β4, α2, and β5). The β-strands are nearly identical with ubiquitin-like protein and α-helices are packed diagonally against a part of the β-sheet. To date, several RBD structures of all three human RAF paralogs have been determined (Table 1). Superposition of all three RBD structures revealed a high structural identity (Figure 2B).

Table 1
Structures related to RAF kinases
Proteins and their complexes PBD ID Resolution (Å) References 
BRS 
 BRAF-KSR1 5VYK 1.75 [75
RBD 
 RAP1A-GppNHp-CRAF RBD1 1C1Y 2.2 [59
 RAP1A(E30D/K31E)-GDP-CRAF RB(A85K/N71R) 3KUC 1.92 [76
 RAS-GDP-CRAF RBD(A85K) 3KUD 2.15 [76
 BRAF RBD 3NY5 1.99 Unpublished data 
 HRAS-GppNHp-CRAF RBD 4G0N 2.45 [77
 HRAS(Q61L)-GppNHp-CRAF RBD 4G3X 3.25 [77
 KRAS-GppNHp-ARAF RBD 2MSE NMR [54
 BRAF RBD 5J17 NMR [58
 BRAF RBD-Rigosertib 5J18 NMR [58
 BRAF RBD 5J2R NMR [58
 ARAF RBD 1WXM NMR Unpublished data 
CRD 
 CRAF CRD 1FAQ, 1FAR NMR [78
CR2 
 14-3-3-CRAF CR2 3CU8, 3NKX 2.4 [79
 14-3-3γ-CRAF CR2 3IQV 1.2 [79
 14-3-3γ-CRAF CR2 3O8I 2.0 [79
 14-3-3-CRAF CR2(S233/S259) 4FJ3 1.95 [80
 14-3-3-CRAF CR2-CN-A 4IHL 2.2 [81
 14-3-3γ-CRAF-CR2(S233/S259) 4IEA 1.7 [81
 14-3-3γ-CRAF CR2 3IQJ 1.15 [79
Kinase domain2 
 CRAF KD 3OMV [79
 BRAF KD(V599E) 1UWJ 3.5 [82
 BRAF–MEK1 4MNE 2.84 [83
Proteins and their complexes PBD ID Resolution (Å) References 
BRS 
 BRAF-KSR1 5VYK 1.75 [75
RBD 
 RAP1A-GppNHp-CRAF RBD1 1C1Y 2.2 [59
 RAP1A(E30D/K31E)-GDP-CRAF RB(A85K/N71R) 3KUC 1.92 [76
 RAS-GDP-CRAF RBD(A85K) 3KUD 2.15 [76
 BRAF RBD 3NY5 1.99 Unpublished data 
 HRAS-GppNHp-CRAF RBD 4G0N 2.45 [77
 HRAS(Q61L)-GppNHp-CRAF RBD 4G3X 3.25 [77
 KRAS-GppNHp-ARAF RBD 2MSE NMR [54
 BRAF RBD 5J17 NMR [58
 BRAF RBD-Rigosertib 5J18 NMR [58
 BRAF RBD 5J2R NMR [58
 ARAF RBD 1WXM NMR Unpublished data 
CRD 
 CRAF CRD 1FAQ, 1FAR NMR [78
CR2 
 14-3-3-CRAF CR2 3CU8, 3NKX 2.4 [79
 14-3-3γ-CRAF CR2 3IQV 1.2 [79
 14-3-3γ-CRAF CR2 3O8I 2.0 [79
 14-3-3-CRAF CR2(S233/S259) 4FJ3 1.95 [80
 14-3-3-CRAF CR2-CN-A 4IHL 2.2 [81
 14-3-3γ-CRAF-CR2(S233/S259) 4IEA 1.7 [81
 14-3-3γ-CRAF CR2 3IQJ 1.15 [79
Kinase domain2 
 CRAF KD 3OMV [79
 BRAF KD(V599E) 1UWJ 3.5 [82
 BRAF–MEK1 4MNE 2.84 [83
1

GppNHp is a non-hydrolyzable GTP analog.

2

A large number of kinase structures in complex with small molecules are not included.

RAF RBDs bind to the switch I region (also known as the effector loop) of the RAS proteins by forming an intermolecular, antiparallel β-sheet (β1 and β2 of the RBD and β2 and β3 of RAS), which establishes a high degree of electrostatic complementarity across the binding interface [53,77,84,85]. RAF RBDs are mainly positively charged, whereas switch I regions of RAS proteins bear mainly negative charges. Among the 10 RAS-binding residues of RAF RBD (Figure 2B, red residues), Arg-59, Gln-66, Lys-84, and Arg-89 (CRAF numbering) contribute to the high binding affinity between RAS and RAF [86]. Genetic studies on Drosophila melanogaster have shown that Arg-89 is strongly involved in the RAS–RAF interaction both in vivo and in vitro. Its substitution for leucine (R89L) abolishes RAS association and consequently activation of CRAF [87]. The R89T mutation has been reported in breast cancer [88]. This mutation may impair RAS–CRAF interaction, since a conservative substitution of Arg-89 for lysine (R89K) disabled CRAF RBD binding to HRAS [89]. Collectively, a search in cancer databases showed that among the 10 RAS-binding in RAF paralogs, seven residues are mutated in human cancer (Supplementary Table S1).

Arg-59 represents a point of RAF paralog discrimination as ARAF, in contrast with BRAF and CRAF, contains a lysine (Lys-22) instead of arginine (Figure 1). CRAF(R59K) loses its proper binding to HRAS, whereas ARAF(K22R) gains a higher affinity for HRAS [90]. The substitution of the conserved Gln-66 among three RAF paralogs for histidine in CRAF and for proline in ARAF (aa 29) has been reported in breast and colorectal carcinoma [91,92]. Lys-84, which is conserved in all species (Figure 1), is responsible for effector specificity and favors the complex formation of CRAF with HRAS in preference to RAP1A. Its substitution for alanine strongly reduces its binding affinity to RAS proteins [86,93]. An interesting observation is that A85K mutation tremendously increases CRAF binding not only to GTP-bound HRAS [87] but also to GDP-bound HRAS [94].

Membrane association of RAF RBDs

Cellular membranes play a critical role in the localization and orientation of protein complexes and in fine-tuning of protein functions [95]. As outlined above, the activity of RAS and RAF paralogs is regulated through different parameters, including membrane association. Analysis of dynamic interactions between KRAS4B and lipid bilayer membrane has revealed that association of ARAF RBD with active KRAS4B not only reorients KRAS4B at the membrane surface but also facilitates membrane binding of ARAF RBD itself [54]. This is in agreement with previous observation that disrupted RAS-association of ARAF full-length disturbs its membrane localization when substituting Arg-52 for leucine (as well as R89L in CRAF) [96,97]. Four basic residues, Lys-28, Lys-66, Arg-68, and Lys-69 (ARAF numbering), are engaged in lipid binding, two of which are identical in RAF kinases, while the other two are variable (Figure 2B). Notably, mutations of Lys-28, Arg-52, Lys-66, Arg-68, and Lys-69 in ARAF have been reported in human cancer [88,98100]. BRAF strikingly contains acidic residues at positions equivalent to Lys-66 and Arg-68 (not only in human but also in other species; Figure 1), which most probably repel membrane lipids. BRAF and CRAF studies have shown that they significantly differ regarding their interactions with HRAS [101]. BRAF binds RAS with higher affinities and does not discriminate between farnesylated and nonfarnesylated HRAS when compared with CRAF. The farnesyl moiety of HRAS has been reported to promote CRAF CRD (cysteine-rich domain) association with HRAS (see the next section).

Cysteine-rich domain

The second domain following RBD in the conserved region 1 (CR1) is a CRD (also called cysteine-rich region or C-kinase homologous domain 1), which is connected through a short flexible linker [102,103]. CRD shows high conservation among different species (Figure 1) and appears to bind membrane lipids via residues 143–160 (Figure 2C), which are conserved among different species (Figure 1). Point mutations of Arg-143 to tryptophan, glutamine, or leucine in CRAF and the equivalent Arg-239 in BRAF to glutamine have been identified in breast and lung carcinoma as well as in melanoma [88,104]. Substitution of Arg-103 and Lys-104 in ARAF CRD (Arg-143 and Lys-144 in CRAF, respectively) for alanine has been shown to disrupt ARAF membrane binding and results in its localization in the cytosol [97]. Two very recent computational studies have analyzed dynamic interaction of KRAS4B with the CRAF RBD–CRD tandem at anionic membranes and proposed how the RAF–RAS complex is regulated at the membrane interface [103,105]. Accordingly, RAF association with the membrane starts with direct binding of RBD to GTP-bound RAS followed by CRD association to the phosphatidylserine-containing liposomes. CRD–membrane interaction is stabilized, in addition to basic residues, by four highly conserved hydrophobic amino acids, Thr-145, Leu-147, Leu-149, Phe-158 Leu-159, Leu160, and Asp-161 (Figure 1). Numerous studies have reported that CRD also binds RAS with low affinity [56,101,105116]. This may lead to a competitive mechanism between membrane binding of CRAF CRD and its association with KRAS4B [103]. Unlike others reports, these two studies have shown that CRD is in the vicinity, but does contact RAS and/or its farnesyl moiety [103,105]. Membrane binding of CRD stabilizes RAS–RAF interaction and, thus, facilitates RAF activation. Farnesylation and carboxymethylation of Cys-186 of HRAS together with hydrophobic amino acids of CRAF CRD have been suggested to strengthen HRAS–CRAF interaction [116]. CRDs contain two functional zinc-binding motifs and bind membrane lipids such as phosphatidic acid and phosphatidylserine [58,117119]. Substitution of two invariant zinc-binding cysteines for serines (C165S/C168S) [96,120] and three basic residues for alanine (Agr-143, Lys-144, and Lys-148) (Figure 2C) diminishes HRAS-dependent activation of CRAF and CRD association with phosphatidylserine-containing liposomes [121].

Several studies have previously shown that CRAF CRD undergoes direct interaction with HRAS, which appears to be enhanced by the farnesyl moiety if using farnesylated RAS [57,101,103,105,107,113,116]. In contrast with RAF RBD, which binds to GTP-bound RAS, HRAS–CRAF CRD interaction is outside the switch regions of HRAS and thus independent of its nucleotide-bound state. This interaction is compromised if Leu-149 and Phe-151 in CRAF CRD were substituted for threonine and glutamine (L149T/F151Q), respectively [113]. L149F substitution in BRAF (L245F) has been detected in melanoma and cardiofaciocutaneous syndrome (NSEuroNet database) (COSMIC database) [122], which may potentiate BRAF CRD interaction with RAS and/or membrane.

RAS–RAF interactions at the membrane interface

Cellular membranes play a critical role in the localization and orientation of protein complexes and in fine-tuning of protein functions [95]. As outlined above, the diversity of RAS and RAF paralogs is regulated through different parameters, including membrane association. For example, orientation of the RAS G domain on the membrane (for more details, see refs [54,123130]) and intrinsic membrane-binding site of RAF, such as CRD of RAF (see above). In addition, NMR measurements of nanodisc-tethered complexes of isotopically labeled KRAS4B-GTP with ARAF RBD have recently shown that ARAF RBD directly contacts the anionic membrane surface, while KRAS4B-GTP adopts a new semi-exposed orientation intermediate between the exposed and occluded orientations [54]. The only residue of the KRAS4B G domain contacting the membrane is R41, which is conserved in numerous RAS proteins. ARAF residues engaged in membrane binding (Lys-66, Arg-68, and Lys-69; Figure 1B) are highly conserved in ARAF and CRAF proteins from different organisms except Xenopous laevis and Caenorhabditis elegans (Figure 1). These basic residues remarkably are acidic in BRAF proteins, suggesting distinct mechanistic differences between the RAF paralogs. In contrast, membrane-binding residues of RAF CRD are conserved within various species, which may stabilize RAS–RAF interaction and thus facilitates RAF activation.

Serine/threonine-rich region

This very short region, also called conserved region 2 (CR2; Figure 2A), is a central module in negative regulation of RAF function. Its phosphorylation at Ser-259 (CRAF numbering) followed by 14-3-3 binding locks RAF kinases in a so-called autoinhibited state [131] that blocks both RAS binding and RAF kinase activity [132,133]. CR2 is the substrate of PKA (protein kinase A) and PKB (protein kinase B)/AKTs [134136]. Gain-of-function mutations in this region are associated with the development of tumors and RASopathies [137,138]. Point mutations in CR2, including R256S, S257L, S259F, and T260R, cause cancer or are associated with developmental disorders (Supplementary Table S2), e.g. hypertrophic cardiomyopathy in Noonan syndrome [79,137139].

Phosphorylation of RAF paralogs at Ser-259 (CRAF numbering) leads to the association of 14-3-3 proteins and the stabilization of RAF paralogs in their inactive state [79,88,137143]. 14-3-3 proteins are ubiquitous adaptor proteins, which serve as scaffold proteins in many cellular functions [79,144]. In humans, seven distinct genes encode for nine paralogs (α, β, γ, δ, ε, η, σ, τ, and ζ), which adopt a homo-/heterodimeric [145,146], W-like structure with the two concave surfaces facing the same side of the molecule, whereby the dimer forms a binding groove [147]. They selectively bind peptide motifs, such as RSXpSXP (single amino acids code; pS, phosphor-serine; X, any amino acid); arginine, serine, and proline residues, which are important for high-affinity interactions [148]. This motif is identical in RAF kinases (Figures 1 and 2D) regardless of the binding sites. Phosphorylated serines in CRAF, including Ser-259 and Ser-621, already identified in 1993 [149] are key phosphorylation sites in two distinct motifs in the RAF kinases (Figure 2D) [144]. In contrast to pSer-259, an inhibitory 14-3-3-binding site [79,131,133], 14-3-3 association with pSer-621 in a conserved region (CR3) stabilizes the active state of the RAF kinases [147]. All 14-3-3 paralogs are able to modulate RAF kinase function due to invariant RAF-binding residues and similar tertiary structure of all 14-3-3 proteins (Figure 2D).

Catalytic kinase domain

The molecular mechanism for the RAF activation in the cell involves a series of complex processes that lead to conformational changes, dimerization, and ultimately activation of the kinase domain [150]. The latter constitutes a major part of CR3, which has all known signatures of protein kinases [151], including the two lobes moving relative to each other and consequently opening or closing the catalytic cleft. In an open form, the small lobe with an antiparallel β-sheet structure binds and orients ATP. In the closed form, the α-helical large lobe binds the protein substrates, such as ubiquitously expressed MEK1/2 (Figure 2E). As RAF dimerization is a key step in pathway activation, the RAF kinases activate MEK1/2 by phosphorylating them at two serines (Ser-218/Ser-222 in MEK1) in the catalytic domain [151,152]. An inspection of amino acid sequences of RAF kinases from different organisms showed identical MEK-binding residues (Figure 1) [153]. However, it is known that RAF kinases differ in their kinase activities. BRAF followed by CRAF and ARAF exhibits the highest MEK activation [35,36]. This can be attributed to dimerization-induced allosteric regulation of protein kinases [41]. RAF kinases form both homodimers and heterodimers, which is crucial for substrate recognition, catalytic efficiency, and substrate specificity [35]. The CRAF/BRAF heterodimers represent the most effective form for MEK phosphorylation when compared with any form of monomers or homodimers [38]. The structure of BRAF kinase domain and MEK1 is insensitive to BRAF dimerization but sensitive to the active conformation of the BRAF kinase and MEK1 phosphorylation, which in turn leads to destabilization of the RAF–MEK1 heterotetrameric complex [83].

Approximately 200 BRAF mutations have been identified in human tumors (see Supplementary Table S1). Based on their mechanism of activation, they can be categorized into three groups corresponding to their sensitivity to inhibitors. Group one mutations (e.g. V600E/K/D/R) signal as monomers and have been suggested to act in a RAS-independent manner [154,155]. Therefore, they are sensitive to BRAF monomer inhibitors. Group 2 mutations (e.g. K601E or G469A, R509H) signal as constitutive dimers and are RAS-independent; hence, they are resistant to RAF inhibitor vemurafenib and may be sensitive to novel MEK inhibitors or RAF dimer inhibitors [154,156]. However, group three mutations have impaired kinase activity (D594G/N) or have low kinase activity (G466V/E). This group is RAS-dependent, and by increasing their binding to RAS or activation of receptors activate ERK (extracellular signal-regulated kinase) signaling [155].

Scaffolding RAF kinases by KSR1/2

Scaffolding proteins play an essential role in regulating the MAPK pathway activity [157159]. MAPK scaffold proteins especially are dynamic entities that (i) directly interact with multiple components of the MAPK signaling complex, (ii) consolidate or sequester protein interactions to physically insulate the MAPK pathway to specific cellular locations, and (iii) regulate signal strength and stimulus-specific responses to efficiently transmit MAPK signals in a spatiotemporal manner and narrow its actions [157,160,161]. Scaffold proteins regulating MAPK signaling include KSR1/2 [162164], MORG1 [165], MP1 [166], paxillin [167], β-arrestin [168], MEKK1 [169], and FHL1 [170]. KSR1/2, which belongs to the best characterized MAPK scaffold proteins, controls the signaling strength and duration of the RAF/MEK/ERK complex at the plasma membrane [157,159].

KSR1/2 are pseudokinases homologous to RAF kinases but lack the ability to interact with RAS proteins [83,171]. KSR co-ordinates the assembly of a multiprotein complex containing RAF, MEK, and ERK and facilitates signal transduction from RAS to ERK [172]. Nguyen et al. [173] did not observe that KSR binds to CRAF or BRAF in vivo. However, Lavoie et al. have shown that the selective heterodimerization of BRAF with KSR1 directly binds to a BRAF-specific region (BRS) at the N-terminus of BRAF through the coiled-coil/sterile α-motif (CC-SAM). BRS (∼60 aa) forms an α-hairpin which consists of two antiparallel α-helices connected by a short turn (Figure 2F) [75].

In BRAF, I666R mutation disabled binding to MEK1 as well as prevented MEK1 phosphorylation, and in KSR1, W831R mutation abolished MEK1 binding [75]. The crystal structure of the KSR2 kinase domain bound to MEK1 through activation segments and C-lope αG helix reveals that residues Ser-218 and Ser-222 are located at the heterodimer interface and are masked by KSR2, making them unaccessible for RAF phosphorylation [174]. Isolated MEK1–BRAF–14-3-3 complexes proved the stable BRAF–MEK1 interaction in the presence of 14-3-3 [83]. Interestingly, MEK promotes, independently of its catalytic function, BRAF-KSR1/2 heterodimerization and allosterically activates BRAF [75]. A recent study has shown that a direct binding of tumor suppressor DIRAS3 with KSR1 interferes with RAS-induced cell transformation. DIRAS3 either enhances homodimerization of KSR1 or recruits KSR1 to the RAS–CRAF complex and thereby sequesters CRAF from binding to BRAF [175].

Conclusions

Emerging evidence indicates that sequential RAS binding of the two N-terminal RAF domains, first by RBD and then followed by CRD at the membrane, induces a conformational change in RAF and results in the release of the C-terminal kinase domain. This mechanism requires additional functions, including dimerization [35,95,160,161,176180]. Lipid membranes act not only as a platform for the assembly of protein complexes but also as a scaffold to stabilize protein–protein interactions and potentiate the signal transduction [35,36,54]. Future analysis of protein interaction networks along with the network reconstitution at liposomes using purified proteins will provide further mechanistic insights into RAS-mediated RAF activation.

RAF kinases are known to regulate, in addition to MEK1/2, also adenylyl cyclase, ASK1, calcineurin, CDC25, DMPK, MST2, MYPT, Rb, ROCK, troponin T, and vimentin, thereby controlling different processes, such as proliferation, differentiation, apoptosis, and contraction and motility, respectively [13,14,181183]. However, the mechanisms how RAF kinases regulate these proteins still need to be addressed in greater detail in a cell-type-specific manner.

Abbreviations

     
  • BRS

    BRAF-specific region

  •  
  • CC-SAM

    coiled-coil/sterile α-motif

  •  
  • CR2

    conserved region 2

  •  
  • CRD

    cyteine-rich domain

  •  
  • ERK

    extracellular signal-regulated kinase

  •  
  • MAPK

    mitogen-activated protein kinase

  •  
  • MEK

    MAPK/ERK kinase

  •  
  • RA domain

    RAS association domain

  •  
  • RAF

    rapidly accelerated fibrosarcoma

  •  
  • RAP

    RAS-related protein

  •  
  • RAS

    rat sarcoma

  •  
  • RASSF

    RAS association domain family proteins

  •  
  • RHEB

    RAS homolog enriched in brain

  •  
  • RBD

    RAS-binding domain

  •  
  • KSR

    kinase suppressor of RAS

Funding

The present study was supported by the Research Committee of the Medical Faculty of the Heinrich-Heine University Düsseldorf [FoKo; grant number 9772690]; the European Network on Noonan Syndrome and Related Disorders (NSEuroNet); the German Federal Ministry of Education and Research (BMBF) — German Network of RASopathy Research (GeNeRARe; projects P4 and P5); the German Research Foundation [Deutsche Forschungsgemeinschaft or DFG; AH 92/8-1]; and the International Research Training Group 1902 Intra- and Interorgan Communication of the Cardiovascular System [IRTG 1902-P6].

Acknowledgments

We are grateful to our colleagues from the Institute of Biochemistry and Molecular Biology II of Heinrich-Heine University Düsseldorf for their support. We apologize to the many scientists and colleagues whose original studies were not included in this Review.

Competing Interests

The Authors declare that there are no competing interests associated with the manuscript.

References

References
1
Rapp
,
U.R.
,
Goldsborough
,
M.D.
,
Mark
,
G.E.
,
Bonner
,
T.I.
,
Groffen
,
J.
,
Reynolds
, Jr,
F.H.
et al. 
(
1983
)
Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus
.
Proc. Natl Acad. Sci. U.S.A.
80
,
4218
4222
2
Bonner
,
T.I.
,
Kerby
,
S.B.
,
Sutrave
,
P.
,
Gunnell
,
M.A.
,
Mark
,
G.
and
Rapp
,
U.R.
(
1985
)
Structure and biological activity of human homologs of the raf/mil oncogene
.
Mol. Cell. Biol.
5
,
1400
1407
3
Huleihel
,
M.
,
Goldsborough
,
M.
,
Cleveland
,
J.
,
Gunnell
,
M.
,
Bonner
,
T.
and
Rapp
,
U.R.
(
1986
)
Characterization of murine A-raf, a new oncogene related to the v-raf oncogene
.
Mol. Cell. Biol.
6
,
2655
2662
4
Ikawa
,
S.
,
Fukui
,
M.
,
Ueyama
,
Y.
,
Tamaoki
,
N.
,
Yamamoto
,
T.
and
Toyoshima
,
K.
(
1988
)
B-raf, a new member of the raf family, is activated by DNA rearrangement
.
Mol. Cell. Biol.
8
,
2651
2654
5
Han
,
M.
,
Golden
,
A.
,
Han
,
Y.
and
Sternberg
,
P.W.
(
1993
)
C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation
.
Nature
363
,
133
140
6
Mark
,
G.E.
,
MacIntyre
,
R.J.
,
Digan
,
M.E.
,
Ambrosio
,
L.
and
Perrimon
,
N.
(
1987
)
Drosophila melanogaster homologs of the raf oncogene
.
Mol. Cell. Biol.
7
,
2134
2140
7
Hsu
,
V.
,
Zobel
,
C.L.
,
Lambie
,
E.J.
,
Schedl
,
T.
and
Kornfeld
,
K.
(
2002
)
Caenorhabditis elegans lin-45 raf is essential for larval viability, fertility and the induction of vulval cell fates
.
Genetics
160
,
481
492
PMID:
[PubMed]
8
Morrison
,
D.K.
(
1990
)
The Raf-1 kinase as a transducer of mitogenic signals
.
Cancer Cells
2
,
377
382
PMID:
[PubMed]
9
Avruch
,
J.
,
Khokhlatchev
,
A.
,
Kyriakis
,
J.M.
,
Luo
,
Z.
,
Tzivion
,
G.
,
Vavvas
,
D.
et al. 
(
2001
)
Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade
.
Recent Prog. Horm. Res.
56
,
127
155
10
Wellbrock
,
C.
,
Karasarides
,
M.
and
Marais
,
R.
(
2004
)
The RAF proteins take centre stage
.
Nat. Rev. Mol. Cell Biol.
5
,
875
885
11
Leicht
,
D.T.
,
Balan
,
V.
,
Kaplun
,
A.
,
Singh-Gupta
,
V.
,
Kaplun
,
L.
,
Dobson
,
M.
et al. 
(
2007
)
Raf kinases: function, regulation and role in human cancer
.
Biochim. Biophys. Acta
1773
,
1196
1212
12
Osborne
,
J.K.
,
Zaganjor
,
E.
and
Cobb
,
M.H.
(
2012
)
Signal control through Raf: in sickness and in health
.
Cell Res.
22
,
14
22
13
Desideri
,
E.
,
Cavallo
,
A.L.
and
Baccarini
,
M.
(
2015
)
Alike but different: RAF paralogs and their signaling outputs
.
Cell
161
,
967
970
14
Niault
,
T.S.
and
Baccarini
,
M.
(
2010
)
Targets of Raf in tumorigenesis
.
Carcinogenesis
31
,
1165
1174
15
Sanges
,
C.
,
Scheuermann
,
C.
,
Zahedi
,
R.P.
,
Sickmann
,
A.
,
Lamberti
,
A.
,
Migliaccio
,
N.
et al. 
(
2012
)
Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells
.
Cell Death Dis.
3
,
e276
16
An
,
S.
,
Yang
,
Y.
,
Ward
,
R.
,
Liu
,
Y.
,
Guo
,
X.-X.
and
Xu
,
T.-R.
(
2015
)
A-Raf: a new star of the family of raf kinases
.
Crit. Rev. Biochem. Mol. Biol.
50
,
520
531
17
Downward
,
J.
(
2003
)
Targeting RAS signalling pathways in cancer therapy
.
Nat. Rev. Cancer
3
,
11
22
18
Maurer
,
G.
,
Tarkowski
,
B.
and
Baccarini
,
M.
(
2011
)
Raf kinases in cancer-roles and therapeutic opportunities
.
Oncogene
30
,
3477
3488
19
Roring
,
M.
and
Brummer
,
T.
(
2012
)
Aberrant B-Raf signaling in human cancer — 10 years from bench to bedside
.
Crit. Rev. Oncog.
17
,
97
121
20
Allanson
,
J.E.
,
Annerén
,
G.
,
Aoki
,
Y.
,
Armour
,
C.M.
,
Bondeson
,
M.-L.
,
Cave
,
H.
et al. 
(
2011
)
Cardio-facio-cutaneous syndrome: does genotype predict phenotype?
Am. J. Med. Genet. C Semin. Med. Genet.
157
,
129
135
21
Tartaglia
,
M.
,
Gelb
,
B.D.
and
Zenker
,
M.
(
2011
)
Noonan syndrome and clinically related disorders
.
Best Pract. Res. Clin. Endocrinol. Metab.
25
,
161
179
22
Vandamme
,
D.
,
Herrero
,
A.
,
Al-Mulla
,
F.
and
Kolch
,
W.
(
2014
)
Regulation of the MAPK pathway by raf kinase inhibitory protein
.
Crit. Rev. Oncogenesis
19
,
405
415
23
Morrison
,
D.K.
and
Cutler
,
R.E.
(
1997
)
The complexity of Raf-1 regulation
.
Curr. Opin. Cell Biol.
9
,
174
179
24
Dhillon
,
A.S.
,
Hagan
,
S.
,
Rath
,
O.
and
Kolch
,
W.
(
2007
)
MAP kinase signalling pathways in cancer
.
Oncogene
26
,
3279
3290
25
Roberts
,
P.J.
and
Der
,
C.J.
(
2007
)
Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer
.
Oncogene
26
,
3291
3310
26
Karnoub
,
A.E.
and
Weinberg
,
R.A.
(
2008
)
Ras oncogenes: split personalities
.
Nat. Rev. Mol. Cell Biol.
9
,
517
531
27
Rauch
,
N.
,
Rukhlenko
,
O.S.
,
Kolch
,
W.
and
Kholodenko
,
B.N.
(
2016
)
MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance
.
Curr. Opin. Struct. Biol.
41
,
151
158
28
Zhang
,
X.-F.
,
Settleman
,
J.
,
Kyriakis
,
J.M.
,
Takeuchi-Suzuki
,
E.
,
Elledge
,
S.J.
,
Marshall
,
M.S.
et al. 
(
1993
)
Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1
.
Nature
364
,
308
313
29
Vojtek
,
A.B.
,
Hollenberg
,
S.M.
and
Cooper
,
J.A.
(
1993
)
Mammalian Ras interacts directly with the serine/threonine kinase Raf
.
Cell
74
,
205
214
30
Moodie
,
S.A.
,
Willumsen
,
B.M.
,
Weber
,
M.J.
and
Wolfman
,
A.
(
1993
)
Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase
.
Science
260
,
1658
1661
31
Warne
,
P.H.
,
Viciana
,
P.R.
and
Downward
,
J.
(
1993
)
Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro
.
Nature
364
,
352
355
32
Van Aelst
,
L.
,
Barr
,
M.
,
Marcus
,
S.
,
Polverino
,
A.
and
Wigler
,
M.
(
1993
)
Complex formation between RAS and RAF and other protein kinases
.
Proc. Natl Acad. Sci. U.S.A.
90
,
6213
6217
33
Kyriakis
,
J.M.
,
App
,
H.
,
Zhang
,
X.-F.
,
Banerjee
,
P.
,
Brautigan
,
D.L.
,
Rapp
,
U.R.
et al. 
(
1992
)
Raf-1 activates MAP kinase-kinase
.
Nature
358
,
417
421
34
Matallanas
,
D.
,
Birtwistle
,
M.
,
Romano
,
D.
,
Zebisch
,
A.
,
Rauch
,
J.
,
von Kriegsheim
,
A.
et al. 
(
2011
)
Raf family kinases: old dogs have learned new tricks
.
Genes Cancer
2
,
232
260
35
Baljuls
,
A.
,
Kholodenko
,
B.N.
and
Kolch
,
W.
(
2013
)
It takes two to tango — signalling by dimeric Raf kinases
.
Mol. Biosyst.
9
,
551
558
36
Marais
,
R.
,
Light
,
Y.
,
Paterson
,
H.F.
,
Mason
,
C.S.
and
Marshall
,
C.J.
(
1997
)
Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases
.
J. Biol. Chem.
272
,
4378
4383
37
Leicht
,
D.T.
,
Balan
,
V.
,
Zhu
,
J.
,
Kaplun
,
A.
,
Bronisz
,
A.
,
Rana
,
A.
et al. 
(
2013
)
MEK-1 activates C-Raf through a Ras-independent mechanism
.
Biochim. Biophys. Acta
1833
,
976
986
38
Rushworth
,
L.K.
,
Hindley
,
A.D.
,
O'Neill
,
E.
and
Kolch
,
W.
(
2006
)
Regulation and role of Raf-1/B-Raf heterodimerization
.
Mol. Cell. Biol.
26
,
2262
2272
39
Rodriguez-Viciana
,
P.
,
Oses-Prieto
,
J.
,
Burlingame
,
A.
,
Fried
,
M.
and
McCormick
,
F.
(
2006
)
A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity
.
Mol. Cell
22
,
217
230
40
Freeman
,
A.K.
,
Ritt
,
D.A.
and
Morrison
,
D.K.
(
2013
)
The importance of Raf dimerization in cell signaling
.
Small GTPases
4
,
180
185
41
Lavoie
,
H.
,
Li
,
J.J.
,
Thevakumaran
,
N.
,
Therrien
,
M.
and
Sicheri
,
F.
(
2014
)
Dimerization-induced allostery in protein kinase regulation
.
Trends Biochem. Sci.
39
,
475
486
42
Lavoie
,
H.
and
Therrien
,
M.
(
2015
)
Regulation of RAF protein kinases in ERK signalling
.
Nat. Rev. Mol. Cell Biol.
16
,
281
298
43
Gutierrez-Erlandsson
,
S.
,
Herrero-Vidal
,
P.
,
Fernandez-Alfara
,
M.
,
Hernandez-Garcia
,
S.
,
Gonzalo-Flores
,
S.
,
Mudarra-Rubio
,
A.
et al. 
(
2013
)
R-RAS2 overexpression in tumors of the human central nervous system
.
Mol. Cancer
12
,
127
44
Herrmann
,
C.
(
2003
)
Ras-effector interactions: after one decade
.
Curr. Opin. Struct. Biol.
13
,
122
129
45
Castellano
,
E.
and
Downward
,
J.
(
2010
)
Role of RAS in the regulation of PI 3-kinase
.
Curr. Top. Microbiol. Immunol.
346
,
143
169
PMID:
[PubMed]
46
Rajalingam
,
K.
,
Schreck
,
R.
,
Rapp
,
U.R.
and
Albert
,
S.
(
2007
)
Ras oncogenes and their downstream targets
.
Biochim. Biophys. Acta
1773
,
1177
1195
47
Nakhaei-Rad
,
S.
,
Haghighi
,
F.
,
Nouri
,
P.
,
Rezaei Adariani
,
S.
,
Lissy
,
J.
,
Kazemein Jasemi
,
N.S.
et al. 
(
2018
)
Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms
.
Crit. Rev. Biochem. Mol. Biol.
53
,
130
156
48
Repasky
,
G.A.
,
Chenette
,
E.J.
and
Der
,
C.J.
(
2004
)
Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis?
Trends Cell Biol.
14
,
639
647
49
Wohlgemuth
,
S.
,
Kiel
,
C.
,
Krämer
,
A.
,
Serrano
,
L.
,
Wittinghofer
,
F.
and
Herrmann
,
C.
(
2005
)
Recognizing and defining true Ras binding domains I: biochemical analysis
.
J. Mol. Biol.
348
,
741
758
50
Nakhaeizadeh
,
H.
,
Amin
,
E.
,
Nakhaei-Rad
,
S.
,
Dvorsky
,
R.
and
Ahmadian
,
M.R.
(
2016
)
The RAS-effector interface: isoform-specific differences in the effector binding regions
.
PLoS ONE
11
,
e0167145
51
Patel
,
M.
and
Côté
,
J.-F.
(
2013
)
Ras GTPases’ interaction with effector domains: breaking the families’ barrier
.
Commun. Integr. Biol.
6
,
e24298
52
Herrmann
,
C.
and
Nassar
,
N.
(
1996
)
Ras and its effectors
.
Prog. Biophys. Mol. Biol.
66
,
1
41
53
Mott
,
H.R.
and
Owen
,
D.
(
2015
)
Structures of Ras superfamily effector complexes: what have we learnt in two decades?
Crit. Rev. Biochem. Mol. Biol.
50
,
85
133
54
Mazhab-Jafari
,
M.T.
,
Marshall
,
C.B.
,
Smith
,
M.J.
,
Gasmi-Seabrook
,
G.M.
,
Stathopulos
,
P.B.
,
Inagaki
,
F.
et al. 
(
2015
)
Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site
.
Proc. Natl Acad. Sci. U.S.A.
112
,
6625
6630
55
Vetter
,
I.R.
and
Wittinghofer
,
A.
(
2001
)
The guanine nucleotide-binding switch in three dimensions
.
Science
294
,
1299
1304
56
Drugan
,
J.K.
,
Khosravi-Far
,
R.
,
White
,
M.A.
,
Der
,
C.J.
,
Sung
,
Y.-J.
,
Hwang
,
Y.-W.
et al. 
(
1996
)
Ras interaction with two distinct binding domains in Raf-1 5 be required for Ras transformation
.
J. Biol. Chem.
271
,
233
237
57
Thapar
,
R.
,
Williams
,
J.G.
and
Campbell
,
S.L.
(
2004
)
NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation
.
J. Mol. Biol.
343
,
1391
1408
58
Athuluri-Divakar
,
S.K.
,
Vasquez-Del Carpio
,
R.
,
Dutta
,
K.
,
Baker
,
S.J.
,
Cosenza
,
S.C.
,
Basu
,
I.
et al. 
(
2016
)
A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling
.
Cell
165
,
643
655
59
Nassar
,
N.
,
Horn
,
G.
,
Herrmann
,
C.
,
Scherer
,
A.
,
McCormick
,
F.
and
Wittinghofer
,
A.
(
1995
)
The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue
.
Nature
375
,
554
560
60
Huang
,
L.
,
Hofer
,
F.
,
Martin
,
G.S.
and
Kim
,
S.-H.
(
1998
)
Structural basis for the interaction of Ras with RalGDS
.
Nat. Struct. Biol.
5
,
422
426
61
Stieglitz
,
B.
,
Bee
,
C.
,
Schwarz
,
D.
,
Yildiz
,
O.
,
Moshnikova
,
A.
,
Khokhlatchev
,
A.
et al. 
(
2008
)
Novel type of Ras effector interaction established between tumour suppressor NORE1A and Ras switch II
.
EMBO J.
27
,
1995
2005
62
Pacold
,
M.E.
,
Suire
,
S.
,
Perisic
,
O.
,
Lara-Gonzalez
,
S.
,
Davis
,
C.T.
,
Walker
,
E.H.
et al. 
(
2000
)
Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma
.
Cell
103
,
931
943
63
Bunney
,
T.D.
,
Harris
,
R.
,
Gandarillas
,
N.L.
,
Josephs
,
M.B.
,
Roe
,
S.M.
,
Sorli
,
S.C.
et al. 
(
2006
)
Structural and mechanistic insights into ras association domains of phospholipase C epsilon
.
Mol. Cell
21
,
495
507
64
Marshall
,
M.S.
(
1993
)
The effector interactions of p21ras
.
Trends Biochem. Sci.
18
,
250
254
65
Wittinghofer
,
A.
and
Herrmann
,
C.
(
1995
)
Ras-effector interactions, the problem of specificity
.
FEBS Lett.
369
,
52
56
66
Marshall
,
C.J.
(
1996
)
Ras effectors
.
Curr. Opin. Cell Biol.
8
,
197
204
67
Wittinghofer
,
A.
and
Nassar
,
N.
(
1996
)
How Ras-related proteins talk to their effectors
.
Trends Biochem. Sci.
21
,
488
491
68
Wittinghofer
,
A.
(
1998
)
Signal transduction via Ras
.
Biol. Chem.
379
,
933
937
PMID:
[PubMed]
69
Corbett
,
K.D.
and
Alber
,
T.
(
2001
)
The many faces of Ras: recognition of small GTP-binding proteins
.
Trends Biochem. Sci.
26
,
710
716
70
Spaargaren
,
M.
,
Martin
,
G.A.
,
McCormick
,
F.
,
Fernandez-Sarabia
,
M.J.
and
Bischoff
,
J.R.
(
1994
)
The Ras-related protein R-ras interacts directly with Raf-1 in a GTP-dependent manner
.
Biochem. J.
300
,
303
307
71
Koide
,
H.
,
Satoh
,
T.
,
Nakafuku
,
M.
and
Kaziro
,
Y.
(
1993
)
GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells
.
Proc. Natl Acad. Sci. U.S.A.
90
,
8683
8686
72
Barnard
,
D.
,
Diaz
,
B.
,
Hettich
,
L.
,
Chuang
,
E.
,
Zhang
,
X.F.
,
Avruch
,
J.
et al. 
(
1995
)
Identification of the sites of interaction between c-Raf-1 and Ras-GTP
.
Oncogene
10
,
1283
1290
PMID:
[PubMed]
73
Herrmann
,
C.
,
Martin
,
G.A.
and
Wittinghofer
,
A.
(
1995
)
Quantitative analysis of the complex between p21 and the ras-binding domain of the human raf-1 protein kinase
.
J. Biol. Chem.
270
,
2901
2905
74
Nassar
,
N.
,
Horn
,
G.
,
Herrmann
,
C.
,
Block
,
C.
,
Janknecht
,
R.
and
Wittinghofer
,
A.
(
1996
)
Ras/Rap effector specificity determined by charge reversal
.
Nat. Struct. Biol.
3
,
723
729
75
Lavoie
,
H.
,
Sahmi
,
M.
,
Maisonneuve
,
P.
,
Marullo
,
S.A.
,
Thevakumaran
,
N.
,
Jin
,
T.
et al. 
(
2018
)
MEK drives BRAF activation through allosteric control of KSR proteins
.
Nature
554
,
549
553
76
Filchtinski
,
D.
,
Sharabi
,
O.
,
Rüppel
,
A.
,
Vetter
,
I.R.
,
Herrmann
,
C.
and
Shifman
,
J.M.
(
2010
)
What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf
.
J Mol Biol.
399
,
422
435
77
Fetics
,
S.K.
,
Guterres
,
H.
,
Kearney
,
B.M.
,
Buhrman
,
G.
,
Ma
,
B.
,
Nussinov
,
R.
et al. 
(
2015
)
Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD
.
Structure
23
,
505
516
78
Mott
,
H.R.
,
Carpenter
,
J.W.
,
Zhong
,
S.
,
Ghosh
,
S.
,
Bell
,
R.M.
and
Campbell
,
S.L.
(
1996
)
The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site
.
Proc. Natl Acad. Sci.
93
,
8312
8317
79
Molzan
,
M.
,
Schumacher
,
B.
,
Ottmann
,
C.
,
Baljuls
,
A.
,
Polzien
,
L.
,
Weyand
,
M.
et al. 
(
2010
)
Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling
.
Mol. Cell. Biol.
30
,
4698
4711
80
Molzan
,
M.
and
Ottmann
,
C.
(
2012
)
Synergistic binding of the phosphorylated S233-and S259-binding sites of C-RAF to one 14-3-3ζ dimer
.
J. Mol. Biol.
423
,
486
495
81
Molzan
,
M.
,
Kasper
,
S.
,
Röglin
,
L.
,
Skwarczynska
,
M.
,
Sassa
,
T.
,
Inoue
,
T.
et al. 
(
2013
)
Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers
.
ACS Chem. Biol.
8
,
1869
1875
82
Wan
,
P.T.
,
Garnett
,
M.J.
,
Roe
,
S.M.
,
Lee
,
S.
,
Niculescu-Duvaz
,
D.
,
Good
,
V.M.
et al. 
(
2004
)
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF
.
Cell
116
,
855
867
83
Haling
,
J.R.
,
Sudhamsu
,
J.
,
Yen
,
I.
,
Sideris
,
S.
,
Sandoval
,
W.
,
Phung
,
W.
et al. 
(
2014
)
Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling
.
Cancer Cell
26
,
402
413
84
Sprang
,
S.R.
(
1995
)
How Ras works: structure of a Rap-Raf complex
.
Structure
3
,
641
643
85
Erijman
,
A.
and
Shifman
,
J.M.
(
2016
)
RAS/effector interactions from structural and biophysical perspective
.
Mini-Rev. Med. Chem.
16
,
370
375
86
Block
,
C.
,
Janknecht
,
R.
,
Herrmann
,
C.
,
Nassar
,
N.
and
Wittinghofer
,
A.
(
1996
)
Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo
.
Nat. Struct. Biol.
3
,
244
251
87
Fridman
,
M.
,
Maruta
,
H.
,
Gonez
,
J.
,
Walker
,
F.
,
Treutlein
,
H.
,
Zeng
,
J.
et al. 
(
2000
)
Point mutants of c-raf-1 RBD with elevated binding to v-Ha-Ras
.
J. Biol. Chem.
275
,
30363
30371
88
Zehir
,
A.
,
Benayed
,
R.
,
Shah
,
R.H.
,
Syed
,
A.
,
Middha
,
S.
,
Kim
,
H.R.
et al. 
(
2017
)
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
.
Nat. Med.
23
,
703
89
Zeng
,
J.
,
Fridman
,
M.
,
Maruta
,
H.
,
Treutlein
,
H.R.
and
Simonson
,
T.
(
1999
)
Protein-protein recognition: an experimental and computational study of the R89K mutation in Raf and its effect on Ras binding
.
Protein Sci.
8
,
50
64
90
Weber
,
C.K.
,
Slupsky
,
J.R.
,
Herrmann
,
C.
,
Schuler
,
M.
,
Rapp
,
U.R.
and
Block
,
C.
(
2000
)
Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes
.
Oncogene
19
,
169
176
91
Lim
,
B.
,
Mun
,
J.
,
Kim
,
J.-H.
,
Kim
,
C.W.
,
Roh
,
S.A.
,
Cho
,
D.-H.
et al. 
(
2015
)
Genome-wide mutation profiles of colorectal tumors and associated liver metastases at the exome and transcriptome levels
.
Oncotarget
6
,
22179
92
Lefebvre
,
C.
,
Bachelot
,
T.
,
Filleron
,
T.
,
Pedrero
,
M.
,
Campone
,
M.
,
Soria
,
J.-C.
et al. 
(
2016
)
Mutational profile of metastatic breast cancers: a retrospective analysis
.
PLoS Med.
13
,
e1002201
93
Terada
,
T.
,
Ito
,
Y.
,
Shirouzu
,
M.
,
Tateno
,
M.
,
Hashimoto
,
K.
,
Kigawa
,
T.
et al. 
(
1999
)
Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins
.
J. Mol. Biol.
286
,
219
232
94
Kiel
,
C.
,
Filchtinski
,
D.
,
Spoerner
,
M.
,
Schreiber
,
G.
,
Kalbitzer
,
H.R.
and
Herrmann
,
C.
(
2009
)
Improved binding of raf to Ras.GDP is correlated with biological activity
.
J. Biol. Chem.
284
,
31893
31902
95
Chavan
,
T.S.
,
Muratcioglu
,
S.
,
Marszalek
,
R.
,
Jang
,
H.
,
Keskin
,
O.
,
Gursoy
,
A.
et al. 
(
2015
)
Plasma membrane regulates Ras signaling networks
.
Cell Logist.
5
,
e1136374
96
Bondeva
,
T.
,
Balla
,
A.
,
Várnai
,
P.
and
Balla
,
T.
(
2002
)
Structural determinants of Ras-Raf interaction analyzed in live cells
.
Mol. Biol. Cell.
13
,
2323
2333
97
Nekhoroshkova
,
E.
,
Albert
,
S.
,
Becker
,
M.
and
Rapp
,
U.R.
(
2009
)
A-RAF kinase functions in ARF6 regulated endocytic membrane traffic
.
PLoS ONE
4
,
e4647
98
Giannakis
,
M.
,
Mu
,
X.J.
,
Shukla
,
S.A.
,
Qian
,
Z.R.
,
Cohen
,
O.
,
Nishihara
,
R.
et al. 
(
2016
)
Genomic correlates of immune-cell infiltrates in colorectal carcinoma
.
Cell Rep.
15
,
857
865
99
George
,
J.
,
Lim
,
J.S.
,
Jang
,
S.J.
,
Cun
,
Y.
,
Ozretić
,
L.
,
Kong
,
G.
et al. 
(
2015
)
Comprehensive genomic profiles of small cell lung cancer
.
Nature
524
,
47
100
Mouradov
,
D.
,
Sloggett
,
C.
,
Jorissen
,
R.N.
,
Love
,
C.G.
,
Li
,
S.
,
Burgess
,
A.W.
et al. 
(
2014
)
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer
.
Cancer Res.
74
,
3238
3247
101
Fischer
,
A.
,
Hekman
,
M.
,
Kuhlmann
,
J.
,
Rubio
,
I.
,
Wiese
,
S.
and
Rapp
,
U.R.
(
2007
)
B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding
.
J. Biol. Chem.
282
,
26503
26516
102
Chuang
,
E.
,
Barnard
,
D.
,
Hettich
,
L.
,
Zhang
,
X.F.
,
Avruch
,
J.
and
Marshall
,
M.S.
(
1994
)
Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues
.
Mol. Cell. Biol.
14
,
5318
5325
103
Li
,
Z.-L.
,
Prakash
,
P.
and
Buck
,
M.
(
2018
)
A ‘Tug of War’ maintains a dynamic protein-membrane complex: molecular dynamics simulations of C-Raf RBD-CRD bound to K-Ras4B at an anionic membrane
.
ACS Cent. Sci.
4
,
298
305
104
Abaan
,
O.D.
,
Polley
,
E.C.
,
Davis
,
S.R.
,
Zhu
,
Y.J.
,
Bilke
,
S.
,
Walker
,
R.L.
et al. 
(
2013
)
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology
.
Cancer Res.
73
,
4372
4382
105
Li
,
S.
,
Jang
,
H.
,
Zhang
,
J.
and
Nussinov
,
R.
(
2018
)
Raf-1 cysteine-Rich domain increases the affinity of K-Ras/Raf at the membrane, promoting MAPK signaling
.
Structure
26
,
513
525.e2
106
Brtva
,
T.R.
,
Drugan
,
J.K.
,
Ghosh
,
S.
,
Terrell
,
R.S.
,
Campbell-Burk
,
S.
,
Bell
,
R.M.
et al. 
(
1995
)
Two distinct Raf domains mediate interaction with Ras
.
J. Biol. Chem.
270
,
9809
9812
107
Hu
,
C.-D.
,
Kariya
,
K.-
,
Tamada
,
M.
,
Akasaka
,
K.
,
Shirouzu
,
M.
,
Yokoyama
,
S.
et al. 
(
1995
)
Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras
.
J. Biol. Chem.
270
,
30274
30277
108
Hu
,
C.-D.
,
Kariya
,
K.-i.
,
Kotani
,
G.
,
Shirouzu
,
M.
,
Yokoyama
,
S.
and
Kataoka
,
T.
(
1997
)
Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with ras-dependent activation of Raf-1
.
J. Biol. Chem.
272
,
11702
11705
109
Roy
,
S.
,
Lane
,
A.
,
Yan
,
J.
,
McPherson
,
R.
and
Hancock
,
J.F.
(
1997
)
Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger
.
J. Biol. Chem.
272
,
20139
20145
110
Luo
,
Z.
,
Diaz
,
B.
,
Marshall
,
M.S.
and
Avruch
,
J.
(
1997
)
An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ
.
Mol. Cell. Biol.
17
,
46
53
111
Daub
,
M.
,
Jöckel
,
J.
,
Quack
,
T.
,
Weber
,
C.K.
,
Schmitz
,
F.
,
Rapp
,
U.R.
et al. 
(
1998
)
The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation
.
Mol. Cell. Biol.
18
,
6698
6710
112
Okada
,
T.
,
Hu
,
C.-D.
,
Jin
,
T.-G.
,
Kariya
,
K.-i.
,
Yamawaki-Kataoka
,
Y.
and
Kataoka
,
T.
(
1999
)
The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases
.
Mol. Cell. Biol.
19
,
6057
6064
113
Williams
,
J.G.
,
Drugan
,
J.K.
,
Yi
,
G.-S.
,
Clark
,
G.J.
,
Der
,
C.J.
and
Campbell
,
S.L.
(
2000
)
Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions
.
J. Biol. Chem.
275
,
22172
22179
114
Chan
,
E.Y.
,
Stang
,
S.L.
,
Bottorff
,
D.A.
and
Stone
,
J.C.
(
2002
)
Mutations in conserved regions 1, 2, and 3 of Raf-1 that activate transforming activity
.
Mol. Carcinog.
33
,
189
197
115
Hibino
,
K.
,
Shibata
,
T.
,
Yanagida
,
T.
and
Sako
,
Y.
(
2011
)
Activation kinetics of RAF protein in the ternary complex of RAF, RAS-GTP, and kinase on the plasma membrane of living cells: single-molecule imaging analysis
.
J. Biol. Chem.
286
,
36460
36468
116
Ke
,
H.
,
Matsumoto
,
S.
,
Murashima
,
Y.
,
Taniguchi-Tamura
,
H.
,
Miyamoto
,
R.
,
Yoshikawa
,
Y.
et al. 
(
2017
)
Structural basis for intramolecular interaction of post-translationally modified H-Ras*GTP prepared by protein ligation
.
FEBS Lett.
591
,
2470
2481
117
Ghosh
,
S.
,
Xie
,
W.Q.
,
Quest
,
A.F.
,
Mabrouk
,
G.M.
,
Strum
,
J.C.
and
Bell
,
R.M.
(
1994
)
The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras
.
J. Biol. Chem.
269
,
10000
10007
118
Hekman
,
M.
,
Hamm
,
H.
,
Villar
,
A.V.
,
Bader
,
B.
,
Kuhlmann
,
J.
,
Nickel
,
J.
et al. 
(
2002
)
Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts
.
J. Biol. Chem.
277
,
24090
24102
119
Ghosh
,
S.
,
Strum
,
J.C.
,
Sciorra
,
V.A.
,
Daniel
,
L.
and
Bell
,
R.M.
(
1996
)
Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells
.
J. Biol. Chem.
271
,
8472
8480
120
Zang
,
M.
,
Waelde
,
C.A.
,
Xiang
,
X.
,
Rana
,
A.
,
Wen
,
R.
and
Luo
,
Z.
(
2001
)
Microtubule integrity regulates Pak leading to Ras-independent activation of Raf-1. Insights into mechanisms of Raf-1 activation
.
J. Biol. Chem.
276
,
25157
25165
121
Improta-Brears
,
T.
,
Ghosh
,
S.
and
Bell
,
R.M.
(
1999
)
Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine
.
Mol. Cell. Biochem.
198
,
171
178
122
Sarkozy
,
A.
,
Carta
,
C.
,
Moretti
,
S.
,
Zampino
,
G.
,
Digilio
,
M.C.
,
Pantaleoni
,
F.
et al. 
(
2009
)
Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum
.
Hum. Mutat.
30
,
695
702
123
Abankwa
,
D.
,
Gorfe
,
A.A.
and
Hancock
,
J.F.
(
2007
)
Ras nanoclusters: molecular structure and assembly
.
Semin. Cell Dev. Biol.
18
,
599
607
124
Abankwa
,
D.
,
Gorfe
,
A.A.
,
Inder
,
K.
and
Hancock
,
J.F.
(
2010
)
Ras membrane orientation and nanodomain localization generate isoform diversity
.
Proc. Natl Acad. Sci. U.S.A.
107
,
1130
1135
125
Cirstea
,
I.C.
,
Kutsche
,
K.
,
Dvorsky
,
R.
,
Gremer
,
L.
,
Carta
,
C.
,
Horn
,
D.
et al. 
(
2010
)
A restricted spectrum of NRAS mutations causes Noonan syndrome
.
Nat. Genet.
42
,
27
29
126
Zhou
,
Y.
and
Hancock
,
J.F.
(
2018
)
Deciphering lipid codes: K-Ras as a paradigm
.
Traffic
19
,
157
165
127
Kapoor
,
S.
,
Triola
,
G.
,
Vetter
,
I.R.
,
Erlkamp
,
M.
,
Waldmann
,
H.
and
Winter
,
R.
(
2012
)
Revealing conformational substates of lipidated N-Ras protein by pressure modulation
.
Proc. Natl Acad. Sci. U.S.A.
109
,
460
465
128
Vogel
,
A.
,
Nikolaus
,
J.
,
Weise
,
K.
,
Triola
,
G.
,
Waldmann
,
H.
,
Winter
,
R.
et al. 
(
2014
)
Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity
.
Biol. Chem.
395
,
779
789
129
Sperlich
,
B.
,
Kapoor
,
S.
,
Waldmann
,
H.
,
Winter
,
R.
and
Weise
,
K.
(
2016
)
Regulation of K-Ras4B membrane binding by calmodulin
.
Biophys. J.
111
,
113
122
130
Erwin
,
N.
,
Patra
,
S.
,
Dwivedi
,
M.
,
Weise
,
K.
and
Winter
,
R.
(
2017
)
Influence of isoform-specific Ras lipidation motifs on protein partitioning and dynamics in model membrane systems of various complexity
.
Biol. Chem.
398
,
290
263
131
Dumaz
,
N.
and
Marais
,
R.
(
2003
)
Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras
.
J. Biol. Chem.
278
,
29819
29823
132
Sendoh
,
H.
,
Hu
,
C.-D.
,
Wu
,
D.
,
Song
,
C.
,
Yamawaki-Kataoka
,
Y.
,
Kotani
,
J.
et al. 
(
2000
)
Role of Raf-1 conserved region 2 in regulation of Ras-dependent Raf-1 activation
.
Biochem. Biophys. Res. Commun.
271
,
596
602
133
Dhillon
,
A.S.
,
Meikle
,
S.
,
Yazici
,
Z.
,
Eulitz
,
M.
and
Kolch
,
W.
(
2002
)
Regulation of Raf-1 activation and signalling by dephosphorylation
.
EMBO J.
21
,
64
71
134
Dhillon
,
A.S.
,
Pollock
,
C.
,
Steen
,
H.
,
Shaw
,
P.E.
,
Mischak
,
H.
and
Kolch
,
W.
(
2002
)
Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259
.
Mol. Cell. Biol.
22
,
3237
3246
135
Zimmermann
,
S.
and
Moelling
,
K.
(
1999
)
Phosphorylation and regulation of Raf by Akt (protein kinase B)
.
Science
286
,
1741
1744
136
Rommel
,
C.
,
Clarke
,
B.A.
,
Zimmermann
,
S.
,
Nunez
,
L.
,
Rossman
,
R.
,
Reid
,
K.
et al. 
(
1999
)
Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt
.
Science
286
,
1738
1741
137
Pandit
,
B.
,
Sarkozy
,
A.
,
Pennacchio
,
L.A.
,
Carta
,
C.
,
Oishi
,
K.
,
Martinelli
,
S.
et al. 
(
2007
)
Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy
.
Nat. Genet.
39
,
1007
1012
138
Razzaque
,
M.A.
,
Nishizawa
,
T.
,
Komoike
,
Y.
,
Yagi
,
H.
,
Furutani
,
M.
,
Amo
,
R.
et al. 
(
2007
)
Germline gain-of-function mutations in RAF1 cause Noonan syndrome
.
Nat. Genet.
39
,
1013
1017
139
Kobayashi
,
T.
,
Aoki
,
Y.
,
Niihori
,
T.
,
Cavé
,
H.
,
Verloes
,
A.
,
Okamoto
,
N.
et al. 
(
2010
)
Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism for mutant activation
.
Hum. Mutat.
31
,
284
294
140
Hodis
,
E.
,
Watson
,
I.R.
,
Kryukov
,
G.V.
,
Arold
,
S.T.
,
Imielinski
,
M.
,
Theurillat
,
J.-P.
et al. 
(
2012
)
A landscape of driver mutations in melanoma
.
Cell
150
,
251
263
141
Martin
,
D.
,
Abba
,
M.C.
,
Molinolo
,
A.A.
,
Vitale-Cross
,
L.
,
Wang
,
Z.
,
Zaida
,
M.
et al. 
(
2014
)
The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies
.
Oncotarget
5
,
8906
8923
PMID:
[PubMed]
142
Shi
,
J.
,
Hua
,
X.
,
Zhu
,
B.
,
Ravichandran
,
S.
,
Wang
,
M.
,
Nguyen
,
C.
et al. 
(
2016
)
Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study
.
PLoS Med.
13
,
e1002162
143
Imielinski
,
M.
,
Greulich
,
H.
,
Kaplan
,
B.
,
Araujo
,
L.
,
Amann
,
J.
,
Horn
,
L.
et al. 
(
2014
)
Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma
.
J. Clin. Invest.
124
,
1582
1586
144
Stevers
,
L.M.
,
Sijbesma
,
E.
,
Botta
,
M.
,
MacKintosh
,
C.
,
Obsil
,
T.
,
Landrieu
,
I.
et al. 
(
2018
)
Modulators of 14-3-3 protein-protein interactions
.
J. Med. Chem.
61
,
3755
3778
145
Yaffe
,
M.B.
,
Rittinger
,
K.
,
Volinia
,
S.
,
Caron
,
P.R.
,
Aitken
,
A.
,
Leffers
,
H.
et al. 
(
1997
)
The structural basis for 14-3-3:phosphopeptide binding specificity
.
Cell
91
,
961
971
146
Shen
,
Y.H.
,
Godlewski
,
J.
,
Bronisz
,
A.
,
Zhu
,
J.
,
Comb
,
M.J.
,
Avruch
,
J.
et al. 
(
2003
)
Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding
.
Mol. Biol. Cell
14
,
4721
4733
147
Tzivion
,
G.
and
Avruch
,
J.
(
2002
)
14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation
.
J. Biol. Chem.
277
,
3061
3064
148
Muslin
,
A.J.
,
Tanner
,
J.W.
,
Allen
,
P.M.
and
Shaw
,
A.S.
(
1996
)
Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine
.
Cell
84
,
889
897
149
Morrison
,
D.K.
,
Heidecker
,
G.
,
Rapp
,
U.R.
and
Copeland
,
T.D.
(
1993
)
Identification of the major phosphorylation sites of the Raf-1 kinase
.
J. Biol. Chem.
268
,
17309
17316
PMID:
[PubMed]
150
Roskoski
,
R.J.
(
2010
)
RAF protein-serine/threonine kinases: structure and regulation
.
Biochem. Biophys. Res. Commun.
399
,
313
317
151
Alessi
,
D.R.
,
Saito
,
Y.
,
Campbell
,
D.G.
,
Cohen
,
P.
,
Sithanandam
,
G.
,
Rapp
,
U.
et al. 
(
1994
)
Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1
.
EMBO J.
13
,
1610
1619
PMID:
[PubMed]
152
Roskoski
,
R.J.
(
2012
)
MEK1/2 dual-specificity protein kinases: structure and regulation
.
Biochem. Biophys. Res. Commun.
417
,
5
10
153
Hatzivassiliou
,
G.
,
Song
,
K.
,
Yen
,
I.
,
Brandhuber
,
B.J.
,
Anderson
,
D.J.
,
Alvarado
,
R.
et al. 
(
2010
)
RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth
.
Nature
464
,
431
400
154
Yao
,
Z.
,
Torres
,
N.M.
,
Tao
,
A.
,
Gao
,
Y.
,
Luo
,
L.
,
Li
,
Q.
et al. 
(
2015
)
BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition
.
Cancer Cell
28
,
370
383
155
Yao
,
Z.
,
Yaeger
,
R.
,
Rodrik-Outmezguine
,
V.S.
,
Tao
,
A.
,
Torres
,
N.M.
,
Chang
,
M.T.
et al. 
(
2017
)
Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS
.
Nature
548
,
234
156
Karoulia
,
Z.
,
Wu
,
Y.
,
Ahmed
,
T.A.
,
Xin
,
Q.
,
Bollard
,
J.
,
Krepler
,
C.
et al. 
(
2016
)
An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling
.
Cancer Cell
30
,
485
498
157
Brown
,
M.D.
and
Sacks
,
D.B.
(
2009
)
Protein scaffolds in MAP kinase signalling
.
Cell. Signal.
21
,
462
469
158
Morrison
,
D.K.
and
Davis
,
R.J.
(
2003
)
Regulation of MAP kinase signaling modules by scaffold proteins in mammals
.
Ann. Rev. Cell Dev. Biol.
19
,
91
118
159
Liang
,
Y.
and
Sheikh
,
F.
(
2016
)
Scaffold proteins regulating extracellular regulated kinase function in cardiac hypertrophy and disease
.
Front. Pharmacol.
7
,
37
160
Shaul
,
Y.D.
and
Seger
,
R.
(
2007
)
The MEK/ERK cascade: from signaling specificity to diverse functions
.
Biochim. Biophys. Acta
1773
,
1213
1226
161
Wortzel
,
I.
and
Seger
,
R.
(
2011
)
The ERK cascade: distinct functions within various subcellular organelles
.
Genes Cancer
2
,
195
209
162
Kornfeld
,
K.
,
Hom
,
D.B.
and
Horvitz
,
H.R.
(
1995
)
The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans
.
Cell
83
,
903
913
163
Sundaram
,
M.
and
Han
,
M.
(
1995
)
The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction
.
Cell
83
,
889
901
164
Therrien
,
M.
,
Chang
,
H.C.
,
Solomon
,
N.M.
,
Karim
,
F.D.
,
Wassarman
,
D.A.
and
Rubin
,
G.M.
(
1995
)
KSR, a novel protein kinase required for RAS signal transduction
.
Cell
83
,
879
888
165
Vomastek
,
T.
,
Schaeffer
,
H.-J.
,
Tarcsafalvi
,
A.
,
Smolkin
,
M.E.
,
Bissonette
,
E.A.
and
Weber
,
M.J.
(
2004
)
Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists
.
Proc. Natl Acad. Sci. U.S.A.
101
,
6981
6986
166
Schaeffer
,
H.J.
,
Catling
,
A.D.
,
Eblen
,
S.T.
,
Collier
,
L.S.
,
Krauss
,
A.
and
Weber
,
M.J.
(
1998
)
MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade
.
Science
281
,
1668
1671
167
Ishibe
,
S.
,
Joly
,
D.
,
Zhu
,
X.
and
Cantley
,
L.G.
(
2003
)
Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis
.
Mol. Cell
12
,
1275
1285
168
McDonald
,
P.H.
,
Chow
,
C.-W.
,
Miller
,
W.E.
,
Laporte
,
S.A.
,
Field
,
M.E.
,
Lin
,
F.-T.
et al. 
(
2000
)
β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3
.
Science
290
,
1574
1577
169
Karandikar
,
M.
,
Xu
,
S.
and
Cobb
,
M.H.
(
2000
)
MEKK1 binds raf-1 and the ERK2 cascade components
.
J. Biol. Chem.
275
,
40120
40127
170
Sheikh
,
F.
,
Raskin
,
A.
,
Chu
,
P.-H.
,
Lange
,
S.
,
Domenighetti
,
A.A.
,
Zheng
,
M.
et al. 
(
2008
)
An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice
.
J. Clin. Invest.
118
,
3870
3880
171
Roy
,
F.
,
Laberge
,
G.
,
Douziech
,
M.
,
Ferland-McCollough
,
D.
and
Therrien
,
M.
(
2002
)
KSR is a scaffold required for activation of the ERK/MAPK module
.
Genes Dev.
16
,
427
438
172
Ritt
,
D.A.
,
Daar
,
I.O.
and
Morrison
,
D.K.
(
2006
)
KSR regulation of the Raf-MEK-ERK cascade
.
Methods Enzymol.
407
,
224
237
173
Nguyen
,
A.
,
Burack
,
W.R.
,
Stock
,
J.L.
,
Kortum
,
R.
,
Chaika
,
O.V.
,
Afkarian
,
M.
et al. 
(
2002
)
Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo
.
Mol. Cell. Biol.
22
,
3035
3045
174
Brennan
,
D.F.
,
Dar
,
A.C.
,
Hertz
,
N.T.
,
Chao
,
W.C.
,
Burlingame
,
A.L.
,
Shokat
,
K.M.
et al. 
(
2011
)
A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK
.
Nature
472
,
366
175
Baljuls
,
A.
,
Dobrzyński
,
M.
,
Rauch
,
J.
,
Rauch
,
N.
and
Kolch
,
W.
(
2016
)
Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF
.
Cell Signal.
28
,
1451
1462
176
Li
,
W.
,
Melnick
,
M.
and
Perrimon
,
N.
(
1998
)
Dual function of Ras in Raf activation
.
Development
125
,
4999
5008
PMID:
[PubMed]
177
Anderson
,
D.H.
(
2006
)
Role of lipids in the MAPK signaling pathway
.
Prog. Lipid Res.
45
,
102
119
178
Yoon
,
S.
and
Seger
,
R.
(
2006
)
The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions
.
Growth Factors
24
,
21
44
179
Cseh
,
B.
,
Doma
,
E.
and
Baccarini
,
M.
(
2014
)
‘RAF’ neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway
.
FEBS Lett.
588
,
2398
2406
180
Blaževitš
,
O.
,
Mideksa
,
Y.G.
,
Šolman
,
M.
,
Ligabue
,
A.
,
Ariotti
,
N.
,
Nakhaeizadeh
,
H.
et al. 
(
2016
)
Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering
.
Sci. Rep.
6
,
24165
181
Chen
,
J.
,
Fujii
,
K.
,
Zhang
,
L.
,
Roberts
,
T.
and
Fu
,
H.
(
2001
)
Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism
.
Proc. Natl Acad. Sci. U.S.A.
98
,
7783
7788
182
Romano
,
D.
,
Nguyen
,
L.K.
,
Matallanas
,
D.
,
Halasz
,
M.
,
Doherty
,
C.
,
Kholodenko
,
B.N.
et al. 
(
2014
)
Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling
.
Nat. Cell Biol.
16
,
673
684
183
Varga
,
A.
,
Ehrenreiter
,
K.
,
Aschenbrenner
,
B.
,
Kocieniewski
,
P.
,
Kochanczyk
,
M.
,
Lipniacki
,
T.
et al. 
(
2017
)
RAF1/BRAF dimerization integrates the signal from RAS to ERK and ROKalpha
.
Sci. Signal.
10
,
eaai8482

Supplementary data