Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.

The ability of organisms to sense and adapt to varying oxygen gradients is a highly conserved process. In metazoans, cellular oxygen levels are principally sensed by prolyl hydroxylases (PHDs, also known as EGLNs) that in turn control the effector transcriptional response through stabilisation of HIFs [1–3]. Under normal oxygen tensions, the HIF-α subunit is hydroxylated by PHDs at two conserved proline residues. This prolyl hydroxylation facilitates the recruitment of the Von Hippel Lindau (VHL) E3 ligase, leading to HIF-α ubiquitination and rapid proteasome-mediated degradation. In hypoxia, there is insufficient oxygen for PHD catalytic activity, therefore HIF-α is not ubiquitinated by VHL and can bind to its constitutively expressed HIF1β counterpart, forming an active dimeric transcription factor [4–7]. This complex translocates to the nucleus, binds hypoxia responsive elements at the HIF responsive genes, and drives a hypoxic adaptation programme [8–11].

There are three HIF-α isoforms (HIF-1α, HIF-2α and HIF-3α), with HIF-1α and HIF-2α having similar but also distinct roles in HIF transcriptional responses [8,10–19]. The role of HIF-3α in hypoxia is less clear and here we use HIF-α to refer to the common functions of the HIF-1α and HIF-2α isoforms. There are also three PHD forms (PHD1-3) [20–25]. Again, these have overlapping and distinct roles, but PHD2 seems to act as the dominant hydroxylase enzyme for HIF-α [26,27].

In this review, we explore the complex nature of ubiquitin-mediated regulation of the HIF response, and focus on the multifaceted roles of deubiquitinating enzymes (DUBs) in tuning this pathway. We start with the discovery that VHL-mediated ubiquitination provides the dynamic and sensitive nature of HIF signalling, before moving on to explore how ubiquitination of HIF can be regulated by DUBs. We also consider how the different properties of DUBs may influence HIF signalling. Lastly, we explore the role of DUBs in other aspects of hypoxia biology, and speculate on the potential future therapeutic applications of these enzymes.

Ubiquitination is well characterised as the major route for targeting proteins for degradation by the 26S proteasome [28,29], but ubiquitin also serves non-degradative roles in many cellular processes including cell signalling, chromatin regulation, and protein trafficking [30–34]. The ability of ubiquitin to regulate such diverse outcomes relates to its ability to form eight different linkage types with itself (through its 7 lysines or N-terminus), and modify proteins with different ubiquitin patterns (monoubiquitination, multiple monoubiquitination, homotypic polyubiquitin chains, heterotypic polyubiquitin chains, and branched linkages). Ubiquitin conjugation has also been recently identified on sugar and lipid moieties [35–37], and combining these with the diverse outcomes from protein ubiquitination has resulted in the ‘ubiquitin code’ providing arguably the most complex regulatory post-translational modification within cells.

Ubiquitination by VHL provided one of the earliest examples of rapid protein degradation regulating a transcriptional response. It may at first seem counterintuitive to control a transcriptional pathway through protein degradation, rather than transcription or translation [38–42]. However, regulation of proteolysis allows the rapid initiation and termination of the HIF response, with HIF-α having a half-life of <5 min under oxygenated conditions [22,38,43–49]. The dominant nature of VHL within the HIF pathway is exemplified by human VHL germline mutations (VHL disease) that exhibit HIF stabilisation and expression of HIF target genes [50,51]. These vascularised tumours, which include haemangioblastomas of the retina and central nervous system, clear cell renal carcinomas (ccRCCs) and pheochromocytomas, all express high levels of vascular endothelial growth factor and erythropoietin, which are well validated targets of HIFs [52–54]. The dominant nature of VHL within HIF signalling is also exemplified by somatic loss of VHL driving the initiation of sporadic ccRCCs. Around 85% of ccRCCs arise from loss of VHL function, which is typically associated with constitutive HIF-2α stabilisation [55–57]. HIF-2α depletion and inhibition suppresses VHL null ccRCC progression [58–60], and HIF-2 inhibitors are now in clinical use for advanced-stage ccRCC and VHL disease [61,62].

While prolyl hydroxylation and VHL-mediated ubiquitination provides the dominant mechanism for turning HIF-mediated transcription on, how HIFs are regulated under hypoxic conditions, or turned off, may involve other regulatory processes. HIF-1 and HIF-2 complexes demonstrate different stabilisation kinetics under hypoxia, and this may be partly explained by transcriptional and translational control of HIFs [63–67]. Additionally, downstream activation of HIF target genes can be regulated by the rate of the HIF heterodimer complex translocation to nucleus, HIF chromatin binding, epigenetic modifications at HIF target genes, and through selective gene activation by the different HIF isoforms [22,68–71]. A number of HIF-α post-translational modifications aside from hydroxylation may also be important for fine-tuning the HIF response, including acetylation [72–74], phosphorylation [75], SUMOylation [76–78], VHL-independent ubiquitination [79–90], and deubiquitination [70,90–98].

Approximately 100 DUBs have been identified in humans to date that are classified into seven families: Ub C-terminal hydrolases (UCHs), Ub-specific proteases (USPs), Machado-Josephin domain proteases, ovarian tumour proteases (OTUs), motif interacting with Ub-containing novel DUB family (MINDY), and zinc-finger-containing Ub peptidase (ZUP1) are all cysteine based proteases; and DUBs that belong to the Jab1/Mov34/MPN+ protease (JAMM) family are zinc-binding metalloproteases [99–101]. The general function of deubiquitinases is to maintain ubiquitin homeostasis and it is achieved by four different modes of action: (1) processing, maturation, and release of the free ubiquitin [102]; (2) removal of ubiquitin chains, rescuing proteins from degradation or modifying signalling pathways; (3) editing of ubiquitin chains that can change ubiquitin signal [103–105]; and (4) recycling of ubiquitin by proteasome-associated DUBs that both activate the 26S and ensure that ubiquitin is not degraded together with the substrate [106–109].

Given that the major regulator of HIF signalling is VHL, the obvious question is whether deubiquitinases play a significant role in HIF control of VHL activity? This could occur through regulation of VHL itself, controlling PHD stability, or through reversing HIF-α ubiquitination.

Several DUBs have been linked to regulation of the VHL-PHD axis, including both USP9X and USP19. USP9X has been reported to counteract SMURF1-mediated ubiquitination of VHL [110] (Figure 1, Table 1), but as USP9X has multiple targets it is unclear how important the regulation of VHL is. USP19 interacts with the SIAH1/2 ubiquitin E3 ligases that can affect the stability of PHDs [89,126–128].

Deubiquitinating enzymes involved in HIF signalling.

Figure 1.
Deubiquitinating enzymes involved in HIF signalling.

Schematic illustrating the HIF pathway in high or low oxygen levels, and its potential regulation by DUBs. DUBs that regulate VHL or alter HIF-α stability (blue). DUBs that act in a VHL independent manner and regulate the HIF response (orange). HRE, hypoxia responsive element; 26S, proteasome.

Figure 1.
Deubiquitinating enzymes involved in HIF signalling.

Schematic illustrating the HIF pathway in high or low oxygen levels, and its potential regulation by DUBs. DUBs that regulate VHL or alter HIF-α stability (blue). DUBs that act in a VHL independent manner and regulate the HIF response (orange). HRE, hypoxia responsive element; 26S, proteasome.

Close modal
Table 1.
DUBs that have been linked with VHL-dependent regulation of HIFs by deubiquitination
DUBEffect on HIF-αBiological effectsChanges in DUB levels in hypoxiaCell types/modelsReferences
HIF response suppressors 
USP9X Reduces VHL levels and increases HIF-1α stability Activates glycolysis and promotes cell proliferation NK 786-O, HEK-293T, HepG2, PC3, B16, HCT116 [110
HIF response activators 
UCHL1 Counteracts VHL mediated ubiquitination of HIF-1α Promotes pulmonary metastasis Increased in hypoxia Murine models of EMT6 and B16F10 pulmonary metastasis [91,111–113
USP5 Interacts with and stabilises HIF-2α Promotes proliferation, colony formation, migration, and invasion Protein levels increased in hypoxia Human breast cancer cell lines: MCF-7, MDA-MB-231 [114
USP7 Deubiquitination and stabilisation of HIF-1α Promotes epithelial-mesenchymal transition and metastasis Protein levels increased but mRNA reduced in hypoxia HEK-293T, H1299, in vivo H1299 EMT and metastatic murine models, mouse skin fibroblasts [94,115
USP8 Deubiquitinates and stabilises HIF-1α and HIF-2α Primary cilia formation Reduced in hypoxia MEFs, RPE-1, RPTEC [116
USP11 Deubiquitinates and stabilises HIF-1α Increase glycolysis mRNA reduced in hypoxia Human HCCs: PLC/PRF/5, Hep3B, HEK-293T and Huh7 [117
USP14 Stabilisation of HIF-1α by deubiquitination Promotes tumour growth, cell migration, invasion Protein levels reduced in hypoxia HCCs: HCCLM3, Huh-7, immortalised hepatocyte cell lines, murine tumour transplantation models [118
USP20 - VDU2 Interacts with VHL, stabilises HIF-1α Increase sexpression of HIF-1 target genes NK COS-7, HeLa and 786-O [119
USP22 Deubiquitinates and stabilises HIF-1α Promotes TP53 deficient HCC stemness and glycolysis mRNA is increased in hypoxia HCCs: BEL-7402, Huh-7, PLC/PRF/5 and SK-Hep-1 [120
USP25 Deubiquitinates and stabilizes HIF-1α, USP25 depletion increases HIF-1α mRNA levels Metabolic reprogramming and survival in PDAC NK Murine derived pancreatic ductal adenocarcinoma (PDAC), PDAC organoids, and patient-derived organoids, in vivo subcutaneous transplantation PDAC model [121
USP29 Deubiquitinates and stabilizes HIF1α under normoxic conditions Promotes glycolysis, drives resistance to therapy with the multi-kinase inhibitor Sorafenib NK HCCs: SNU398 Huh7, HLE, Hep3B; murine tumour transplantation models [122
USP29 Directly deubiquitinates and stabilizes HIF1α and MYC Drives biosynthesis and tumour survival NK TH-MYCN neuroblastoma and Eμ-Myc B cell lymphoma mice models, SK-N-BE2, Ramos, A549 and HEK-293T [123
USP33 ERK1/2 dependent deubiquination and stabilisation of HIF-2α Glioma stem cells maintenance, tumour vascularization, and growth mRNA and protein levels increased in hypoxia Human glioblastoma specimens, glioma stem cells, and non-stem tumour cells [124
USP51 Fine-tunes VHL activity by associating with HIF-1α through Elongin C — member of VHL E3 ligase complex Proliferation, migration, stemness, and chemoresistance under hypoxia mRNA increased by HIF-α driven transcription Colorectal cancer cell lines: HCT116, DLD-1, SW480, and LoVo [125
DUBEffect on HIF-αBiological effectsChanges in DUB levels in hypoxiaCell types/modelsReferences
HIF response suppressors 
USP9X Reduces VHL levels and increases HIF-1α stability Activates glycolysis and promotes cell proliferation NK 786-O, HEK-293T, HepG2, PC3, B16, HCT116 [110
HIF response activators 
UCHL1 Counteracts VHL mediated ubiquitination of HIF-1α Promotes pulmonary metastasis Increased in hypoxia Murine models of EMT6 and B16F10 pulmonary metastasis [91,111–113
USP5 Interacts with and stabilises HIF-2α Promotes proliferation, colony formation, migration, and invasion Protein levels increased in hypoxia Human breast cancer cell lines: MCF-7, MDA-MB-231 [114
USP7 Deubiquitination and stabilisation of HIF-1α Promotes epithelial-mesenchymal transition and metastasis Protein levels increased but mRNA reduced in hypoxia HEK-293T, H1299, in vivo H1299 EMT and metastatic murine models, mouse skin fibroblasts [94,115
USP8 Deubiquitinates and stabilises HIF-1α and HIF-2α Primary cilia formation Reduced in hypoxia MEFs, RPE-1, RPTEC [116
USP11 Deubiquitinates and stabilises HIF-1α Increase glycolysis mRNA reduced in hypoxia Human HCCs: PLC/PRF/5, Hep3B, HEK-293T and Huh7 [117
USP14 Stabilisation of HIF-1α by deubiquitination Promotes tumour growth, cell migration, invasion Protein levels reduced in hypoxia HCCs: HCCLM3, Huh-7, immortalised hepatocyte cell lines, murine tumour transplantation models [118
USP20 - VDU2 Interacts with VHL, stabilises HIF-1α Increase sexpression of HIF-1 target genes NK COS-7, HeLa and 786-O [119
USP22 Deubiquitinates and stabilises HIF-1α Promotes TP53 deficient HCC stemness and glycolysis mRNA is increased in hypoxia HCCs: BEL-7402, Huh-7, PLC/PRF/5 and SK-Hep-1 [120
USP25 Deubiquitinates and stabilizes HIF-1α, USP25 depletion increases HIF-1α mRNA levels Metabolic reprogramming and survival in PDAC NK Murine derived pancreatic ductal adenocarcinoma (PDAC), PDAC organoids, and patient-derived organoids, in vivo subcutaneous transplantation PDAC model [121
USP29 Deubiquitinates and stabilizes HIF1α under normoxic conditions Promotes glycolysis, drives resistance to therapy with the multi-kinase inhibitor Sorafenib NK HCCs: SNU398 Huh7, HLE, Hep3B; murine tumour transplantation models [122
USP29 Directly deubiquitinates and stabilizes HIF1α and MYC Drives biosynthesis and tumour survival NK TH-MYCN neuroblastoma and Eμ-Myc B cell lymphoma mice models, SK-N-BE2, Ramos, A549 and HEK-293T [123
USP33 ERK1/2 dependent deubiquination and stabilisation of HIF-2α Glioma stem cells maintenance, tumour vascularization, and growth mRNA and protein levels increased in hypoxia Human glioblastoma specimens, glioma stem cells, and non-stem tumour cells [124
USP51 Fine-tunes VHL activity by associating with HIF-1α through Elongin C — member of VHL E3 ligase complex Proliferation, migration, stemness, and chemoresistance under hypoxia mRNA increased by HIF-α driven transcription Colorectal cancer cell lines: HCT116, DLD-1, SW480, and LoVo [125

The effect on HIF protein or transcription, the phenotypic outcome, DUB regulation by hypoxia, and the cell lines/models used are listed. NK, not known.

While VHL or PHD levels may be controlled to some extent by ubiquitination, many more DUBs have been proposed to oppose or fine-tune VHL mediated ubiquitination of HIF (Figure 1, Table 1). For example, USP51 and USP20 have been reported to directly associate with VHL, enabling them to oppose VHL mediated HIF-α ubiquitination more efficiently [119,125]. USP51 associates with VHL through the Elongin C subunit and counteracts HIF-1α ubiquitination [125]. USP51 is itself a direct target of HIF-1α and HIF-2α driven transcription, which suggests that there is a positive feedback loop for control.

Many of the DUBs linked to HIF-α deubiquitination seem to show cell line or cancer type specificity (Figure 1, Table 1). Limitations of some of these studies relate to a reliance on overexpression of the DUBs. Nonetheless, there is a growing body of research suggesting that DUBs can oppose VHL directly in specific contexts. USP11, USP22, and USP29 have been shown to deubiquitinate and stabilise HIF-1α in human HCC cells [117,122,123]. Hypoxia also alters the expression of these DUBs in hepatocellular cells, with USP11 being down-regulated but conversely USP22 is up-regulated [117,120]. USP33 deubiquitinates and stabilises HIF-2α in glioma cells, aiding glioma stem cell maintenance, tumour vascularization, and glioblastoma growth [124]. USP25 has been suggested to directly counteract VHL by deubiquitination and stabilisation of HIF-1α in pancreatic ductal adenocarcinoma models [121]. Interestingly, even though USP25 depletion increases HIF-1α transcription, its effect on HIF driven gene transcription is still detrimental. USP5 has been shown to interact with and deubiquitinate HIF-2α in breast cancer models, and its protein level is positively correlated with HIF-2α protein levels in human breast cancer tissues [114]. UCHL1 promotes pulmonary metastasis in murine models by abrogating VHL-mediated ubiquitination of HIF-1α [111,112,129,130]. USP7 has been proposed to deubiquitinate and stabilise HIF-1α in several cancer line cell types [115]. Finally, USP8 has been reported to deubiquitinate both HIF-α isoforms in non-cancer cell lines (293T, mouse embryonic fibroblasts (MEFs) and RPE-1 cells), with a reported role in primary cilia formation [116].

Together, while these studies indicate some involvement of DUBs in tuning HIF-α levels, VHL is still dominant in regulating HIF stability. It is also noteworthy that DUBs may have pleotropic effects through deubiquitinating multiple targets. For instance, the predominant effects of USP7 inhibition in cancers relates to MDM2 destabilisation and p53 stabilisation, and not HIF regulation [131].

While counteracting VHL activity is unlikely to be the main function of DUBs within the HIF pathway, deubiquitination may be involved in other aspects of the HIF response, including transcription of the HIF-α isoforms, HIF localisation, nuclear translocation, or the control of protein synthesis. To interrogate the functions of DUBs in an unbiased manner, we recently undertook a functional genomics approach to find DUBs that regulate HIF-α stability or modulate a HIF-mediated transcriptional response in cancer and non-cancer cell lines [70]. Interestingly, in these CRISPR mutagenesis screens, DUBs that regulated HIF-α stability were not observed, reflecting redundancy or that VHL remains dominant in the conditions tested. However, two DUBs were identified with high confidence as being required for activating the HIF response, namely USP43 and USP52 (PAN2). USP52 is a pseudo-DUB that was previously identified to stabilise HIF-1α mRNA at the P bodies, therefore potentiating the HIF transcriptional response [98]. USP43 is less studied, but we and others have shown that it co-operates with 14-3-3 adaptor proteins independently of its catalytic activity [70,132,133]. This interaction with 14-3-3 proteins is required for activation of a HIF-1 but not HIF-2 response, facilitating nuclear accumulation of the HIF-1 complex and activation of HIF-1 target genes [70]. USP43 is itself up-regulated in hypoxia in a HIF-dependent manner, demonstrating a forward feedback loop that is commonly observed with HIF target genes [70]. Whether there is an additional function of USP43 catalytic activity in HIF signalling remains to be seen, but similarly to USP52 and USP19, it is important to consider that non-catalytic functions of DUBs can have functional consequences [70,95,98] (Figure 1, Table 2).

Table 2.
DUBs that have been linked with VHL-independent regulation of HIFs by deubiquitination
DUBEffect on HIF-αBiological effectsChanges in DUB levels in hypoxiaCell types/modelsReferences
HIF response suppressors 
USP10 Regulates mTOR/S6K mediated HIF-1α synthesis Glycolysis, cell proliferation, migration, and adhesion mRNA and protein reduced in hypoxia HEK-293T, MEFs, HCT116, COLO320 [94
HIF response activators 
OTUB1 Non-canonical inhibition of HIF-1α ubiquitination and HIF-1α stabilisation, independent from PHD/VHL and FIH Promotes hypoxia-induced glycolytic reprogramming for cellular metabolic adaptation mRNA increased in hypoxia HEK-293T and H1299 [91
OTUB1 Covalently binds FIH in hypoxia Regulate energy expenditure, age-dependent body weight gain, blood glucose clearance and plasma insulin levels in mice Hypoxia increases OTUB1 enzymatic activity HEK-293T, MCF7, Hep3B; MEFs and murine models; MDA-MB468, HepG2, Hep3B, Caco-2, A549; murine tissues and organs [134-137,138
OTUD7B (Cezanne) Regulates HIF-2α expression in E2F1- dependent manner, stabilises E2F1 for HIF-2α transcription HIF-2α homeostasis NK HeLa and HEK-293T, 786-O, murine tissues and organs [93
OTUD7B (Cezanne) Regulates HIF-1α protein levels at post-translational level, via targeting HIF-1α for lysosomal degradation HIF-1α homeostasis mRNA increased in endothelial cells, but not in U2OS U2OS, HeLa, HEK-293T, RCC4, A498, MEFs [92
USP19 Stabilises HIF-1α independently of its catalytic activity, potentially by rescuing it from proteasomal degradation Activates glycolysis and angiogenesis NK HeLa, HEK-293T, human melanoma cell line M2, U2OS [95
USP28 Prevents FBXW7 dependent HIF-1α degradation during hypoxia Increases transcriptional activity of HIF-1α in cells mRNA and protein reduced in hypoxia HCT116, HepG2, HeLa, and HEK-293T, HMEC-1, MEFs [90,96,139
USP38 Deubiquitinates and stabilises HIF-1α independently from PHD/VHL Potentiates hypoxic response NK H1299 cell line [97
USP43 Aids HIF-1α binding to chromatin Positively regulates HIF-1α transcriptional response mRNA and protein increased in hypoxia HEK-293T, HeLa, A549, MCF-7, HKC-8, RPE-1, 786-O, RCC4 [70
USP52 (PAN2) Stabilises HIF-1α mRNA at the P bodies Potentiates hypoxic response NK U2OS, HeLa, HEK-293T, RCC4, 786-O [98
DUBEffect on HIF-αBiological effectsChanges in DUB levels in hypoxiaCell types/modelsReferences
HIF response suppressors 
USP10 Regulates mTOR/S6K mediated HIF-1α synthesis Glycolysis, cell proliferation, migration, and adhesion mRNA and protein reduced in hypoxia HEK-293T, MEFs, HCT116, COLO320 [94
HIF response activators 
OTUB1 Non-canonical inhibition of HIF-1α ubiquitination and HIF-1α stabilisation, independent from PHD/VHL and FIH Promotes hypoxia-induced glycolytic reprogramming for cellular metabolic adaptation mRNA increased in hypoxia HEK-293T and H1299 [91
OTUB1 Covalently binds FIH in hypoxia Regulate energy expenditure, age-dependent body weight gain, blood glucose clearance and plasma insulin levels in mice Hypoxia increases OTUB1 enzymatic activity HEK-293T, MCF7, Hep3B; MEFs and murine models; MDA-MB468, HepG2, Hep3B, Caco-2, A549; murine tissues and organs [134-137,138
OTUD7B (Cezanne) Regulates HIF-2α expression in E2F1- dependent manner, stabilises E2F1 for HIF-2α transcription HIF-2α homeostasis NK HeLa and HEK-293T, 786-O, murine tissues and organs [93
OTUD7B (Cezanne) Regulates HIF-1α protein levels at post-translational level, via targeting HIF-1α for lysosomal degradation HIF-1α homeostasis mRNA increased in endothelial cells, but not in U2OS U2OS, HeLa, HEK-293T, RCC4, A498, MEFs [92
USP19 Stabilises HIF-1α independently of its catalytic activity, potentially by rescuing it from proteasomal degradation Activates glycolysis and angiogenesis NK HeLa, HEK-293T, human melanoma cell line M2, U2OS [95
USP28 Prevents FBXW7 dependent HIF-1α degradation during hypoxia Increases transcriptional activity of HIF-1α in cells mRNA and protein reduced in hypoxia HCT116, HepG2, HeLa, and HEK-293T, HMEC-1, MEFs [90,96,139
USP38 Deubiquitinates and stabilises HIF-1α independently from PHD/VHL Potentiates hypoxic response NK H1299 cell line [97
USP43 Aids HIF-1α binding to chromatin Positively regulates HIF-1α transcriptional response mRNA and protein increased in hypoxia HEK-293T, HeLa, A549, MCF-7, HKC-8, RPE-1, 786-O, RCC4 [70
USP52 (PAN2) Stabilises HIF-1α mRNA at the P bodies Potentiates hypoxic response NK U2OS, HeLa, HEK-293T, RCC4, 786-O [98

The effect on HIF protein or transcription, the phenotypic outcome, DUB regulation by hypoxia, and the cell lines/ models used are listed. NK, not known.

Other VHL-independent roles for DUBs in HIF signalling have been explored in relation to non-canonical HIF ubiquitination. There remains controversy regarding the importance of VHL-independent HIF-α ubiquitination, but it is worth noting that DUBs have been implicated in these pathways (Figure 1, Table 2). For instance, USP38 interacts with HIF-1α to deubiquitinate K11-linked polyubiquitination of HIF-1α at Lys769, stabilising HIF independently from the PHD/VHL axis [97]. OTUB1 is responsible for non-canonical inhibition of HIF-1α ubiquitination and HIF-1α stabilisation that is independent from PHD/VHL and Factor Inhibiting HIF (FIH) [91]. OTUB1 has also been extensively studied in relation to FIH, where it can covalently bind FIH in hypoxia and regulate energy expenditure, age-dependent body weight gain, blood glucose clearance and basal plasma insulin levels in mice [134–137]. USP28 is an additional DUB that may regulate HIF-α ubiquitination independently of VHL. USP28 counteracts FBXW7 dependent ubiquitination and HIF-1α degradation during hypoxia. In turn, the stabilisation of HIF-1α in hypoxia leads to activation of USP28 through SENP1-mediated USP28 deSUMOylation to further increase transcriptional activity of HIF-1 in human cancer cell lines [90,96].

USP10 and OTUD7B (Cezanne) provide interesting examples of DUBs implicated in regulating HIF-α at the transcriptional and translational level (Figure 1, Table 2). USP10 depletion increases mTOR/S6K mediated HIF-1α but not HIF-2α protein synthesis in normoxic and hypoxic conditions in colon cancer cell lines. Cezanne confers different activities towards specific isoforms of HIF. It regulates HIF-2α expression in E2F1- dependent manner by stabilising E2F1 for HIF-2α transcription [93]. Additionally, Cezanne regulates HIF-1α protein levels at the post-translational level, via chaperone-mediated autophagy [92].

It is also worth considering the potential involvement of DUBs in other cellular responses to oxygen availability. Whilst VHL and HIFs are central to metazoan responses to hypoxia, other oxygen-sensing pathways can occur and VHL can ubiquitinate other proteins aside from HIF-α. For example, USP13 has been reported to be induced in hypoxia and deubiquitinate toll-like receptor 4 (TLR4), leading to nuclear factor-κB (NF-κB) activation [140]. Interestingly, USP13 has also been implicated in renal cancer, but rather than altering HIF activity, USP13 deubiquitinates another VHL target gene and oncogenic driver, ZHX2 [141].

Several DUBs are involved in ischaemia reperfusion injury (IRI). USP29 deubiquitnates TGF-β activated kinase 1 (TAK1) and alleviates ischaemic liver injury by reducing inflammation and apoptosis [142]. Similarly, USP10 has been suggested to protect against hepatic IRI via TAK1 signalling [143]. OTUD4 and Cezanne remove K63-linked polyubiquitin chains on tumour necrosis factor receptor-associated factor 6 (TRAF6), alleviating inflammation and IRI in the liver and kidney respectively [144,145], and USP8 alleviates intermittent hypoxia/reoxygenation induced inflammation by removing K63-linked ubiquitination of TAK1 [146]. In contrast, USP11 aggravates IRI by promoting the deubiquitination of 3 (TRAF3) [147].

DUBs have also been implicated in recovery after cerebral hypoxic damage, such as USP14 in neonatal hypoxia-ischaemia encephalopathy, and UCHL1 which ameliorates autophagy and tissue damage after traumatic brain injury [129,148].

Lastly, an area closely linked to hypoxia biology is radiosensitivity, and DUBs are potentially important in altering cell sensitivity to ionising radiation due to their involvement in DNA damage repair, the cell cycle, and cell death. Generating small molecule DUB inhibitors or novel deubiquitinase-targeting chimeras [149] is an attractive strategy for radiosensitisation. The most prominent ubiquitin enzymes in hypoxia radiosensitivity regulation are the E3 ligases Parkin, VHL, and TRIM21; and the DUBs USP20, USP25, USP28, and UCHL1 (reviewed in [150,151]).

Research on DUBs in hypoxia is growing rapidly, but one of the main challenges to gain a comprehensive understanding is the apparent cell specificity of some of the findings. Many prior studies have relied on overexpression systems [113,115,116,119], and there are few in vitro studies confirming direct action of DUBs on VHL-mediated ubiquitination of HIF-α. There are technical challenges in undertaking these studies, as DUBs are typically large proteins, have multiple domains, can work in complexes, and have pleotropic effects. When unbiased functional genomic approaches have been used [70,98,121], they have not detected DUBs that counteract VHL-mediated ubiquitination of HIF-α. These findings point to VHL being the dominant regulator of HIF stability, as supported by genetic mutations altering VHL function [152,153]. This makes the discovery of DUBs opposing VHL unlikely to have a biological relevance in vivo. Why some DUBs act in specific cell types or cancer models is not clear, and future studies will need to move to models more representative of primary cells and patient-derived tumours. Further developments in DUB structural biology, enzymology and the generation of selective DUB inhibitors will provide key tools to explore the roles of DUBs in hypoxia, without the reliance on overexpression or sustained depletion of DUBs, thereby avoiding non-specific or compensatory effects.

Pharmacological manipulation of HIFs has already shown promise in clinical settings. Several PHD inhibitors are at various stages of approval or treatment for anaemia due to chronic kidney disease [154–161]. The selective HIF-2 inhibitor, Belzutifan (PT2977), is licenced for treatment of advanced-stage ccRCC and VHL disease [61,162,163]. However, the acquired resistance to HIF-2α inhibition [163,164] is likely to need combined therapeutic strategies, where DUB inhibitors could play a role. Additionally, as some DUBs show specificity to the different HIF isoforms (Tables 1 and 2), DUB inhibitors may help target different aspects of the HIF response, but important questions remain regarding the disease settings where they may be useful.

There are several DUB inhibitors in preclinical studies, including USP1, USP8, USP9X, USP10, USP13, USP14, USP47, and UCHL1 inhibitors [109,165–172]; and a few in clinical trials (e.g. the USP30 inhibitor, MTX652, and a USP1 inhibitor, KSQ-4279) [173,174]. However, there are reasons why finding selective and efficient DUB inhibitors is complicated. Technical challenges in drug design and DUB biochemistry combined with the broad functions of DUBs have been a limitation in the field. Furthermore, DUBs can have both catalytic and catalytic-independent roles [70], and where catalysis is important, DUBs have a relatively conserved catalytic site structure that leads to a lack of potent inhibitor selectivity [175]. Finally, many DUBs undergo allosteric regulation required for conformational changes, localisation and activation [176–179]. Despite these challenges, we should be encouraged by the serendipitous success of other inhibitors targeting components of the ubiquitin-proteasome system in disease, such as proteasome inhibitors. Targeting the main machinery for selective protein breakdown would at first glance seem unlikely to be of therapeutic value, but observations of selective cell death in plasma cells initiated the studies of proteasome inhibitors in myeloma, with this class of drugs becoming central to the treatment of this cancer [180]. DUB inhibition therefore still holds potential therapeutic promise, and only by understanding the cellular contexts in which DUBs function can we determine where their therapeutic potential may lie.

The authors declare that there are no competing interests associated with the manuscript.

This work was supported by a Wellcome Senior Clinical Research Fellowship to J.A.N. (215477/Z/19/Z), and a Lister Institute Research Fellowship to J.A.N.

Open access for this article was enabled by the participation of University of Cambridge in an all-inclusive Read & Publish agreement with Portland Press and the Biochemical Society under a transformative agreement with JISC.

Conceptualisation, T.P. and J.A.N.; Writing — original draft, reviewing and editing, T.P. and J.A.N.; Funding acquisition, J.A.N.; Resources, J.A.N.; Supervision, J.A.N.

We would like to thank the Nathan lab for helpful discussions. We also thank the many researchers who have contributed to work cited in this review. Not all work could be cited due to space restrictions, and we apologise for these omissions.

DUB

deubiquitinating enzyme

FIH

Factor Inhibiting HIF

HIF

Hypoxia Inducible transcription Factor

IRI

ischaemia reperfusion injury

MEF

mouse embryonic fibroblast

OTU

ovarian tumour protease

PDAC

pancreatic ductal adenocarcinoma

PHD

prolyl hydroxylases

TAK1

TGF-β activated kinase 1

UCH

Ub C-terminal hydrolase

USP

Ub-specific protease

VHL

Von Hippel Lindau

1
Kaelin
, Jr,
W.G.
, and
Ratcliffe
,
P.J.
(
2008
)
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
.
Mol. Cell
30
,
393
402
2
Pugh
,
C.W.
and
Ratcliffe
,
P.J.
(
2017
)
New horizons in hypoxia signaling pathways
.
Exp. Cell Res.
356
,
116
121
3
Semenza
,
G.L.
(
2012
)
Hypoxia-inducible factors in physiology and medicine
.
Cell
148
,
399
408
4
Wang
,
G.L.
,
Jiang
,
B.H.
,
Rue
,
E.A.
and
Semenza
,
G.L.
(
1995
)
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
.
Proc. Natl Acad. Sci. U.S.A.
92
,
5510
5514
5
Wang
,
G.L.
and
Semenza
,
G.L.
(
1993
)
Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia
.
J. Biol. Chem.
268
,
21513
21518
6
Wang
,
G.L.
and
Semenza
,
G.L.
(
1993
)
General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia
.
Proc. Natl Acad. Sci. U.S.A.
90
,
4304
4308
7
Wang
,
G.L.
and
Semenza
,
G.L.
(
1995
)
Purification and characterization of hypoxia-inducible factor 1
.
J. Biol. Chem.
270
,
1230
1237
8
Iyer
,
N.V.
,
Kotch
,
L.E.
,
Agani
,
F.
,
Leung
,
S.W.
,
Laughner
,
E.
,
Wenger
,
R.H.
et al. (
1998
)
Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha
.
Genes Dev.
12
,
149
162
9
Maxwell
,
P.H.
,
Pugh
,
C.W.
and
Ratcliffe
,
P.J.
(
1993
)
Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism
.
Proc. Natl Acad. Sci. U.S.A.
90
,
2423
2427
10
Peng
,
J.
,
Zhang
,
L.
,
Drysdale
,
L.
and
Fong
,
G.H.
(
2000
)
The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling
.
Proc. Natl Acad. Sci. U.S.A.
97
,
8386
8391
11
Ryan
,
H.E.
,
Lo
,
J.
and
Johnson
,
R.S.
(
1998
)
HIF-1 alpha is required for solid tumor formation and embryonic vascularization
.
EMBO J.
17
,
3005
3015
12
Compernolle
,
V.
,
Brusselmans
,
K.
,
Acker
,
T.
,
Hoet
,
P.
,
Tjwa
,
M.
,
Beck
,
H.
et al. (
2002
)
Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice
.
Nat. Med.
8
,
702
710
13
Ema
,
M.
,
Taya
,
S.
,
Yokotani
,
N.
,
Sogawa
,
K.
,
Matsuda
,
Y.
and
Fujii-Kuriyama
,
Y.
(
1997
)
A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development
.
Proc. Natl Acad. Sci. U.S.A.
94
,
4273
4278
14
Fandrey
,
J.
(
2004
)
Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression
.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
286
,
R977
R988
15
Flamme
,
I.
,
Frohlich
,
T.
,
von Reutern
,
M.
,
Kappel
,
A.
,
Damert
,
A.
and
Risau
,
W.
(
1997
)
HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels
.
Mech. Dev.
63
,
51
60
16
Hara
,
S.
,
Hamada
,
J.
,
Kobayashi
,
C.
,
Kondo
,
Y.
and
Imura
,
N.
(
2001
)
Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha
.
Biochem. Biophys. Res. Commun.
287
,
808
813
17
Hogenesch
,
J.B.
,
Chan
,
W.K.
,
Jackiw
,
V.H.
,
Brown
,
R.C.
,
Gu
,
Y.Z.
,
Pray-Grant
,
M.
et al. (
1997
)
Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway
.
J. Biol. Chem.
272
,
8581
8593
18
Makino
,
Y.
,
Cao
,
R.
,
Svensson
,
K.
,
Bertilsson
,
G.
,
Asman
,
M.
,
Tanaka
,
H.
et al. (
2001
)
Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression
.
Nature
414
,
550
554
19
Maynard
,
M.A.
,
Qi
,
H.
,
Chung
,
J.
,
Lee
,
E.H.
,
Kondo
,
Y.
,
Hara
,
S.
et al. (
2003
)
Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex
.
J. Biol. Chem.
278
,
11032
11040
20
Epstein
,
A.C.
,
Gleadle
,
J.M.
,
McNeill
,
L.A.
,
Hewitson
,
K.S.
,
O'Rourke
,
J.
,
Mole
,
D.R.
et al. (
2001
)
C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
.
Cell
107
,
43
54
21
Hirsila
,
M.
,
Koivunen
,
P.
,
Gunzler
,
V.
,
Kivirikko
,
K.I.
and
Myllyharju
,
J.
(
2003
)
Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor
.
J. Biol. Chem.
278
,
30772
30780
22
Jaakkola
,
P.
,
Mole
,
D.R.
,
Tian
,
Y.M.
,
Wilson
,
M.I.
,
Gielbert
,
J.
,
Gaskell
,
S.J.
et al. (
2001
)
Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
.
Science
292
,
468
472
23
Masson
,
N.
,
Willam
,
C.
,
Maxwell
,
P.H.
,
Pugh
,
C.W.
and
Ratcliffe
,
P.J.
(
2001
)
Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation
.
EMBO J.
20
,
5197
5206
24
Min
,
J.H.
,
Yang
,
H.
,
Ivan
,
M.
,
Gertler
,
F.
,
Kaelin
, Jr,
W.G.
, and
Pavletich
,
N.P.
(
2002
)
Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling
.
Science
296
,
1886
1889
25
Bruick
,
R.K.
and
McKnight
,
S.L.
(
2001
)
A conserved family of prolyl-4-hydroxylases that modify HIF
.
Science
294
,
1337
1340
26
Appelhoff
,
R.J.
,
Tian
,
Y.M.
,
Raval
,
R.R.
,
Turley
,
H.
,
Harris
,
A.L.
,
Pugh
,
C.W.
et al. (
2004
)
Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor
.
J. Biol. Chem.
279
,
38458
38465
27
Berra
,
E.
,
Benizri
,
E.
,
Ginouves
,
A.
,
Volmat
,
V.
,
Roux
,
D.
and
Pouyssegur
,
J.
(
2003
)
HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia
.
EMBO J.
22
,
4082
4090
28
Ciechanover
,
A.
(
2015
)
The unravelling of the ubiquitin system
.
Nat. Rev. Mol. Cell Biol.
16
,
322
324
29
Goldstein
,
G.
,
Scheid
,
M.
,
Hammerling
,
U.
,
Schlesinger
,
D.H.
,
Niall
,
H.D.
and
Boyse
,
E.A.
(
1975
)
Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells
.
Proc. Natl Acad. Sci. U.S.A.
72
,
11
15
30
Dikic
,
I.
and
Schulman
,
B.A.
(
2023
)
An expanded lexicon for the ubiquitin code
.
Nat. Rev. Mol. Cell Biol.
24
,
273
287
31
Komander
,
D.
and
Rape
,
M.
(
2012
)
The ubiquitin code
.
Annu. Rev. Biochem.
81
,
203
229
32
Lescouzeres
,
L.
and
Bomont
,
P.
(
2020
)
E3 ubiquitin ligases in neurological diseases: focus on gigaxonin and autophagy
.
Front. Physiol.
11
,
1022
33
Schulman
,
B.A.
and
Harper
,
J.W.
(
2021
)
Host ubiquitin protein tags lipid to fight bacteria
.
Nature
594
,
28
29
34
Yoshida
,
Y.
,
Mizushima
,
T.
and
Tanaka
,
K.
(
2019
)
Sugar-recognizing ubiquitin ligases: action mechanisms and physiology
.
Front. Physiol.
10
,
104
35
Kelsall
,
I.R.
,
McCrory
,
E.H.
,
Xu
,
Y.
,
Scudamore
,
C.L.
,
Nanda
,
S.K.
,
Mancebo-Gamella
,
P.
et al. (
2022
)
HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation
.
EMBO J.
41
,
e109700
36
Kelsall
,
I.R.
,
Zhang
,
J.
,
Knebel
,
A.
,
Arthur
,
J.S.C.
and
Cohen
,
P.
(
2019
)
The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells
.
Proc. Natl Acad. Sci. U.S.A.
116
,
13293
13298
37
Otten
,
E.G.
Werner
,
E.
,
Crespillo-Casado
,
A.
,
Boyle
,
K.B.
,
Dharamdasani
,
V.
,
Pathe
,
C.
et al. (
2021
)
Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection
.
Nature
594
,
111
116
38
Huang
,
L.E.
,
Gu
,
J.
,
Schau
,
M.
and
Bunn
,
H.F.
(
1998
)
Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway
.
Proc. Natl Acad. Sci. U.S.A.
95
,
7987
7992
39
Kallio
,
P.J.
,
Wilson
,
W.J.
,
O'Brien
,
S.
,
Makino
,
Y.
and
Poellinger
,
L.
(
1999
)
Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway
.
J. Biol. Chem.
274
,
6519
6525
40
Pugh
,
C.W.
,
Tan
,
C.C.
,
Jones
,
R.W.
and
Ratcliffe
,
P.J.
(
1991
)
Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene
.
Proc. Natl Acad. Sci. U.S.A.
88
,
10553
10557
41
Salceda
,
S.
and
Caro
,
J.
(
1997
)
Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes
.
J. Biol. Chem.
272
,
22642
22647
42
Srinivas
,
V.
,
Zhang
,
L.P.
,
Zhu
,
X.H.
and
Caro
,
J.
(
1999
)
Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins
.
Biochem. Biophys. Res. Commun.
260
,
557
561
43
Cockman
,
M.E.
,
Masson
,
N.
,
Mole
,
D.R.
,
Jaakkola
,
P.
,
Chang
,
G.W.
,
Clifford
,
S.C.
et al. (
2000
)
Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein
.
J. Biol. Chem.
275
,
25733
25741
44
Ivan
,
M.
,
Kondo
,
K.
,
Yang
,
H.
,
Kim
,
W.
,
Valiando
,
J.
,
Ohh
,
M.
et al. (
2001
)
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing
.
Science
292
,
464
468
45
Kamura
,
T.
,
Sato
,
S.
,
Iwai
,
K.
,
Czyzyk-Krzeska
,
M.
,
Conaway
,
R.C.
and
Conaway
,
J.W.
(
2000
)
Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex
.
Proc. Natl Acad. Sci. U.S.A.
97
,
10430
10435
46
Krieg
,
M.
,
Haas
,
R.
,
Brauch
,
H.
,
Acker
,
T.
,
Flamme
,
I.
and
Plate
,
K.H.
(
2000
)
Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function
.
Oncogene
19
,
5435
5443
47
Maxwell
,
P.H.
,
Wiesener
,
M.S.
,
Chang
,
G.W.
,
Clifford
,
S.C.
,
Vaux
,
E.C.
,
Cockman
,
M.E.
et al. (
1999
)
The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
.
Nature
399
,
271
275
48
Ohh
,
M.
,
Park
,
C.W.
,
Ivan
,
M.
,
Hoffman
,
M.A.
,
Kim
,
T.Y.
,
Huang
,
L.E.
et al. (
2000
)
Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein
.
Nat. Cell Biol.
2
,
423
427
49
Tanimoto
,
K.
,
Makino
,
Y.
,
Pereira
,
T.
and
Poellinger
,
L.
(
2000
)
Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein
.
EMBO J.
19
,
4298
4309
50
Iliopoulos
,
O.
,
Kibel
,
A.
,
Gray
,
S.
and
Kaelin
, Jr,
W.G.
(
1995
)
Tumour suppression by the human von Hippel-Lindau gene product
.
Nat. Med.
1
,
822
826
51
Iliopoulos
,
O.
,
Levy
,
A.P.
,
Jiang
,
C.
,
Kaelin
, Jr,
W.G.
, and
Goldberg
,
M.A.
(
1996
)
Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein
.
Proc. Natl Acad. Sci. U.S.A.
93
,
10595
10599
52
Sato
,
K.
,
Terada
,
K.
,
Sugiyama
,
T.
,
Takahashi
,
S.
,
Saito
,
M.
,
Moriyama
,
M.
et al. (
1994
)
Frequent overexpression of vascular endothelial growth factor gene in human renal cell carcinoma
.
Tohoku J. Exp. Med.
173
,
355
360
53
Takahashi
,
A.
,
Sasaki
,
H.
,
Kim
,
S.J.
,
Tobisu
,
K.
,
Kakizoe
,
T.
,
Tsukamoto
,
T.
et al. (
1994
)
Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis
.
Cancer Res.
54
,
4233
4237
https://pubmed.ncbi.nlm.nih.gov/7518352/
54
Wizigmann-Voos
,
S.
,
Breier
,
G.
,
Risau
,
W.
and
Plate
,
K.H.
(
1995
)
Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas
.
Cancer Res.
55
,
1358
1364
https://pubmed.ncbi.nlm.nih.gov/7533661/
55
The Cancer Genome Atlas Research Network
(
2013
)
Comprehensive molecular characterization of clear cell renal cell carcinoma
.
Nature
499
,
43
49
56
Mitchell
,
T.J.
,
Turajlic
,
S.
,
Rowan
,
A.
,
Nicol
,
D.
,
Farmery
,
J.H.R.
,
O'Brien
,
T.
et al. (
2018
)
Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal
.
Cell
173
,
611
623.e617
57
Turajlic
,
S.
,
Xu
,
H.
,
Litchfield
,
K.
,
Rowan
,
A.
,
Horswell
,
S.
,
Chambers
,
T.
et al. (
2018
)
Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal
.
Cell
173
,
595
610.e511
58
Kondo
,
K.
,
Kim
,
W.Y.
,
Lechpammer
,
M.
and
Kaelin
, Jr,
W.G.
(
2003
) Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth.
PLoS Biol.
1
,
E83
59
Kondo
,
K.
,
Klco
,
J.
,
Nakamura
,
E.
,
Lechpammer
,
M.
and
Kaelin
, Jr,
W.G.
(
2002
)
Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein
.
Cancer Cell
1
,
237
246
60
Zimmer
,
M.
,
Doucette
,
D.
,
Siddiqui
,
N.
and
Iliopoulos
,
O.
(
2004
)
Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors
.
Mol. Cancer Res.
2
,
89
95
61
Cho
,
H.
,
Du
,
X.
,
Rizzi
,
J.P.
,
Liberzon
,
E.
,
Chakraborty
,
A.A.
,
Gao
,
W.
et al. (
2016
)
On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models
.
Nature
539
,
107
111
62
Liao
,
C.
,
Hu
,
L.
and
Zhang
,
Q.
(
2024
)
Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma
.
Nat. Rev. Urol.
21
,
662
675
63
Belaiba
,
R.S.
,
Bonello
,
S.
,
Zahringer
,
C.
,
Schmidt
,
S.
,
Hess
,
J.
,
Kietzmann
,
T.
et al. (
2007
)
Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells
.
Mol. Biol. Cell
18
,
4691
4697
64
Dery
,
M.A.
,
Michaud
,
M.D.
and
Richard
,
D.E.
(
2005
)
Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators
.
Int. J. Biochem. Cell Biol.
37
,
535
540
65
Galban
,
S.
,
Kuwano
,
Y.
,
Pullmann
, Jr,
R.
,
Martindale
,
J.L.
,
Kim
,
H.H.
,
Lal
,
A.
et al. (
2008
)
RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha
.
Mol. Cell. Biol.
28
,
93
107
66
Minet
,
E.
,
Mottet
,
D.
,
Michel
,
G.
,
Roland
,
I.
,
Raes
,
M.
,
Remacle
,
J.
et al. (
1999
)
Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction
.
FEBS Lett.
460
,
251
256
67
Sperandio
,
S.
,
Fortin
,
J.
,
Sasik
,
R.
,
Robitaille
,
L.
,
Corbeil
,
J.
and
de Belle
,
I.
(
2009
)
The transcription factor Egr1 regulates the HIF-1alpha gene during hypoxia
.
Mol. Carcinog.
48
,
38
44
68
Depping
,
R.
,
Steinhoff
,
A.
,
Schindler
,
S.G.
,
Friedrich
,
B.
,
Fagerlund
,
R.
,
Metzen
,
E.
et al. (
2008
)
Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway
.
Biochim. Biophys. Acta
1783
,
394
404
69
Ortmann
,
B.M.
,
Burrows
,
N.
,
Lobb
,
I.T.
,
Arnaiz
,
E.
,
Wit
,
N.
,
Bailey
,
P.S.J.
et al. (
2021
)
The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes
.
Nat. Genet.
53
,
1022
1035
70
Pauzaite
,
T.
,
Wit
,
N.
,
Seear
,
R.V.
and
Nathan
,
J.A.
(
2024
)
Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response
.
EMBO J.
43
,
3677
3709
71
Mahon
,
P.C.
,
Hirota
,
K.
and
Semenza
,
G.L.
(
2001
)
FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity
.
Genes Dev.
15
,
2675
2686
72
Chen
,
Q.
,
Cui
,
K.
,
Zhao
,
Z.
,
Xu
,
X.
,
Liu
,
Y.
,
Shen
,
Y.
et al. (
2022
)
LPS stimulation stabilizes HIF-1alpha by enhancing HIF-1alpha acetylation via the PARP1-SIRT1 and ACLY-Tip60 pathways in macrophages
.
FASEB J.
36
,
e22418
73
Geng
,
H.
,
Harvey
,
C.T.
,
Pittsenbarger
,
J.
,
Liu
,
Q.
,
Beer
,
T.M.
,
Xue
,
C.
et al. (
2011
)
HDAC4 protein regulates HIF1alpha protein lysine acetylation and cancer cell response to hypoxia
.
J. Biol. Chem.
286
,
38095
38102
74
Geng
,
H.
,
Liu
,
Q.
,
Xue
,
C.
,
David
,
L.L.
,
Beer
,
T.M.
,
Thomas
,
G.V.
et al. (
2012
)
HIF1alpha protein stability is increased by acetylation at lysine 709
.
J. Biol. Chem.
287
,
35496
35505
75
Kietzmann
,
T.
,
Mennerich
,
D.
and
Dimova
,
E.Y.
(
2016
)
Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity
.
Front. Cell Dev. Biol.
4
,
11
76
Bae
,
S.H.
,
Jeong
,
J.W.
,
Park
,
J.A.
,
Kim
,
S.H.
,
Bae
,
M.K.
,
Choi
,
S.J.
et al. (
2004
)
Sumoylation increases HIF-1alpha stability and its transcriptional activity
.
Biochem. Biophys. Res. Commun.
324
,
394
400
77
Filippopoulou
,
C.
,
Simos
,
G.
and
Chachami
,
G.
(
2020
)
The role of sumoylation in the response to hypoxia: an overview
.
Cells
9
,
2359
78
Malkov
,
M.I.
,
Flood
,
D.
and
Taylor
,
C.T.
(
2023
)
SUMOylation indirectly suppresses activity of the HIF-1alpha pathway in intestinal epithelial cells
.
J. Biol. Chem.
299
,
105280
79
Ehrlich
,
E.S.
,
Wang
,
T.
,
Luo
,
K.
,
Xiao
,
Z.
,
Niewiadomska
,
A.M.
,
Martinez
,
T.
et al. (
2009
)
Regulation of Hsp90 client proteins by a Cullin5-RING E3 ubiquitin ligase
.
Proc. Natl Acad. Sci. U.S.A.
106
,
20330
20335
80
Joshi
,
S.
,
Singh
,
A.R.
and
Durden
,
D.L.
(
2014
)
MDM2 regulates hypoxic hypoxia-inducible factor 1alpha stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner
.
J. Biol. Chem.
289
,
22785
22797
81
Kang
,
H.H.
,
Williams
,
R.
,
Leary
,
J.
,
kConFab Investigators
;
Ringland
,
C.
,
Kirk
,
J.
et al. (
2006
)
Evaluation of models to predict BRCA germline mutations
.
Br. J. Cancer
95
,
914
920
82
Koh
,
M.Y.
,
Darnay
,
B.G.
and
Powis
,
G.
(
2008
)
Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation
.
Mol. Cell. Biol.
28
,
7081
7095
83
Koh
,
M.Y.
,
Lemos
, Jr,
R.
,
Liu
,
X.
and
Powis
,
G.
(
2011
)
The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion
.
Cancer Res.
71
,
4015
4027
84
Liu
,
Y.V.
,
Baek
,
J.H.
,
Zhang
,
H.
,
Diez
,
R.
,
Cole
,
R.N.
and
Semenza
,
G.L.
(
2007
)
RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha
.
Mol. Cell
25
,
207
217
85
Liu
,
Y.V.
and
Semenza
,
G.L.
(
2007
)
RACK1 vs. HSP90: competition for HIF-1 alpha degradation vs. stabilization
.
Cell Cycle
6
,
656
659
86
Sun
,
H.
,
Li
,
X.B.
,
Meng
,
Y.
,
Fan
,
L.
,
Li
,
M.
and
Fang
,
J.
(
2013
)
TRAF6 upregulates expression of HIF-1alpha and promotes tumor angiogenesis
.
Cancer Res.
73
,
4950
4959
87
Yang
,
S.
,
Wang
,
B.
,
Humphries
,
F.
,
Hogan
,
A.E.
,
O'Shea
,
D.
and
Moynagh
,
P.N.
(
2014
)
The E3 ubiquitin ligase Pellino3 protects against obesity-induced inflammation and insulin resistance
.
Immunity
41
,
973
987
88
Yuan
,
W.C.
,
Lee
,
Y.R.
,
Huang
,
S.F.
,
Lin
,
Y.M.
,
Chen
,
T.Y.
,
Chung
,
H.C.
et al. (
2011
)
A Cullin3-KLHL20 ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression
.
Cancer Cell
20
,
214
228
89
Zhang
,
Q.
,
Wang
,
Z.
,
Hou
,
F.
,
Harding
,
R.
,
Huang
,
X.
,
Dong
,
A.
et al. (
2017
)
The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear
.
Biochim. Biophys. Acta Gen. Subj.
1861
,
3095
3105
90
Flugel
,
D.
,
Gorlach
,
A.
and
Kietzmann
,
T.
(
2012
)
GSK-3beta regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1alpha
.
Blood
119
,
1292
1301
91
Liu
,
X.
,
Deng
,
H.
,
Tang
,
J.
,
Wang
,
Z.
,
Zhu
,
C.
,
Cai
,
X.
et al. (
2022
)
OTUB1 augments hypoxia signaling via its non-canonical ubiquitination inhibition of HIF-1alpha during hypoxia adaptation
.
Cell Death Dis.
13
,
560
92
Bremm
,
A.
,
Moniz
,
S.
,
Mader
,
J.
,
Rocha
,
S.
and
Komander
,
D.
(
2014
)
Cezanne (OTUD7B) regulates HIF-1alpha homeostasis in a proteasome-independent manner
.
EMBO Rep.
15
,
1268
1277
93
Moniz
,
S.
,
Bandarra
,
D.
,
Biddlestone
,
J.
,
Campbell
,
K.J.
,
Komander
,
D.
,
Bremm
,
A.
et al. (
2015
)
Cezanne regulates E2F1-dependent HIF2alpha expression
.
J. Cell Sci.
128
,
3082
3093
94
Kubaichuk
,
K.
and
Kietzmann
,
T.
(
2023
)
USP10 contributes to colon carcinogenesis via mTOR/S6K mediated HIF-1alpha but not HIF-2alpha protein synthesis
.
Cells
12
,
1585
95
Altun
,
M.
,
Zhao
,
B.
,
Velasco
,
K.
,
Liu
,
H.
,
Hassink
,
G.
,
Paschke
,
J.
et al. (
2012
)
Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1alpha (HIF-1alpha) during hypoxia
.
J. Biol. Chem.
287
,
1962
1969
96
Du
,
S.C.
,
Zhu
,
L.
,
Wang
,
Y.X.
,
Liu
,
J.
,
Zhang
,
D.
,
Chen
,
Y.L.
et al. (
2019
)
SENP1-mediated deSUMOylation of USP28 regulated HIF-1alpha accumulation and activation during hypoxia response
.
Cancer Cell Int.
19
,
4
97
Wang
,
R.
,
Cai
,
X.
,
Li
,
X.
,
Li
,
J.
,
Liu
,
X.
,
Wang
,
J.
et al. (
2024
)
USP38 promotes deubiquitination of K11-linked polyubiquitination of HIF1alpha at Lys769 to enhance hypoxia signaling
.
J. Biol. Chem.
300
,
105532
98
Bett
,
J.S.
,
Ibrahim
,
A.F.
,
Garg
,
A.K.
,
Kelly
,
V.
,
Pedrioli
,
P.
,
Rocha
,
S.
et al. (
2013
)
The P-body component USP52/PAN2 is a novel regulator of HIF1A mRNA stability
.
Biochem. J.
451
,
185
194
99
Clague
,
M.J.
,
Urbe
,
S.
and
Komander
,
D.
(
2019
)
Publisher correction: breaking the chains: deubiquitylating enzyme specificity begets function
.
Nat. Rev. Mol. Cell Biol.
20
,
321
100
Lange
,
S.M.
,
Armstrong
,
L.A.
and
Kulathu
,
Y.
(
2022
)
Deubiquitinases: from mechanisms to their inhibition by small molecules
.
Mol. Cell
82
,
15
29
101
Clague
,
M.J.
,
Urbe
,
S.
and
Komander
,
D.
(
2019
)
Breaking the chains: deubiquitylating enzyme specificity begets function
.
Nat. Rev. Mol. Cell Biol.
20
,
338
352
102
Grou
,
C.P.
,
Pinto
,
M.P.
,
Mendes
,
A.V.
,
Domingues
,
P.
and
Azevedo
,
J.E.
(
2015
)
The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors
.
Sci. Rep.
5
,
12836
103
Bai
,
W.
,
Huo
,
S.
,
Li
,
J.
and
Shao
,
J.
(
2022
)
Advances in the study of the ubiquitin-editing enzyme A20
.
Front. Pharmacol.
13
,
845262
104
Dittmar
,
G.
and
Winklhofer
,
K.F.
(
2019
)
Linear ubiquitin chains: cellular functions and strategies for detection and quantification
.
Front. Chem.
7
,
915
105
Swatek
,
K.N.
and
Komander
,
D.
(
2016
)
Ubiquitin modifications
.
Cell Res.
26
,
399
422
106
Harrigan
,
J.A.
,
Jacq
,
X.
,
Martin
,
N.M.
and
Jackson
,
S.P.
(
2018
)
Deubiquitylating enzymes and drug discovery: emerging opportunities
.
Nat. Rev. Drug Discov.
17
,
57
78
107
Yao
,
T.
and
Cohen
,
R.E.
(
2002
)
A cryptic protease couples deubiquitination and degradation by the proteasome
.
Nature
419
,
403
407
108
Peth
,
A.
,
Besche
,
H.C.
and
Goldberg
,
A.L.
(
2009
)
Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening
.
Mol. Cell
36
,
794
804
109
Lee
,
B.H.
,
Lee
,
M.J.
,
Park
,
S.
,
Oh
,
D.C.
,
Elsasser
,
S.
,
Chen
,
P.C.
et al. (
2010
)
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
.
Nature
467
,
179
184
110
Zhang
,
C.
,
Peng
,
Z.
,
Zhu
,
M.
,
Wang
,
P.
,
Du
,
X.
,
Li
,
X.
et al. (
2016
)
USP9X destabilizes pVHL and promotes cell proliferation
.
Oncotarget
7
,
60519
60534
111
Goto
,
Y.
,
Zeng
,
L.
,
Yeom
,
C.J.
,
Zhu
,
Y.
,
Morinibu
,
A.
,
Shinomiya
,
K.
et al. (
2015
)
UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1alpha
.
Nat. Commun.
6
,
6153
112
Nakashima
,
R.
,
Goto
,
Y.
,
Koyasu
,
S.
,
Kobayashi
,
M.
,
Morinibu
,
A.
,
Yoshimura
,
M.
et al. (
2017
)
UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization
.
Sci. Rep.
7
,
6879
113
Hu
,
S.
,
Chen
,
X.
,
Zhu
,
M.
,
Hu
,
H.
,
Zhou
,
C.
,
Shi
,
L.
et al. (
2021
)
Expression, purification and characterization of the second DUSP domain of deubiquitinase USP20/VDU2
.
Protein Expr. Purif.
181
,
105836
114
Huang
,
W.
,
Liu
,
X.
,
Zhang
,
Y.
,
Deng
,
M.
,
Li
,
G.
,
Chen
,
G.
et al. (
2022
)
USP5 promotes breast cancer cell proliferation and metastasis by stabilizing HIF2alpha
.
J. Cell. Physiol.
237
,
2211
2219
115
Wu
,
H.T.
,
Kuo
,
Y.C.
,
Hung
,
J.J.
,
Huang
,
C.H.
,
Chen
,
W.Y.
,
Chou
,
T.Y.
et al. (
2016
)
K63-polyubiquitinated HAUSP deubiquitinates HIF-1alpha and dictates H3K56 acetylation promoting hypoxia-induced tumour progression
.
Nat. Commun.
7
,
13644
116
Troilo
,
A.
,
Alexander
,
I.
,
Muehl
,
S.
,
Jaramillo
,
D.
,
Knobeloch
,
K.P.
and
Krek
,
W.
(
2014
)
HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia
.
EMBO Rep.
15
,
77
85
117
Qiao
,
L.
,
Hu
,
W.
,
Li
,
L.
,
Chen
,
X.
,
Liu
,
L.
and
Wang
,
J.
(
2024
)
USP11 promotes glycolysis by regulating HIF-1alpha stability in hepatocellular carcinoma
.
J. Cell. Mol. Med.
28
,
e18017
118
Lv
,
C.
,
Wang
,
S.
,
Lin
,
L.
,
Wang
,
C.
,
Zeng
,
K.
,
Meng
,
Y.
et al. (
2021
)
USP14 maintains HIF1-alpha stabilization via its deubiquitination activity in hepatocellular carcinoma
.
Cell Death Dis.
12
,
803
119
Li
,
Z.
,
Wang
,
D.
,
Messing
,
E.M.
and
Wu
,
G.
(
2005
)
VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha
.
EMBO Rep.
6
,
373
378
120
Ling
,
S.
,
Shan
,
Q.
,
Zhan
,
Q.
,
Ye
,
Q.
,
Liu
,
P.
,
Xu
,
S.
et al. (
2020
)
USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1alpha/USP22 positive feedback loop upon TP53 inactivation
.
Gut
69
,
1322
1334
121
Nelson
,
J.K.
,
Thin
,
M.Z.
,
Evan
,
T.
,
Howell
,
S.
,
Wu
,
M.
,
Almeida
,
B.
et al. (
2022
)
USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer
.
Nat. Commun.
13
,
2070
122
Gao
,
R.
,
Buechel
,
D.
,
Kalathur
,
R.K.R.
,
Morini
,
M.F.
,
Coto-Llerena
,
M.
,
Ercan
,
C.
et al. (
2021
)
USP29-mediated HIF1alpha stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis
.
Oncogenesis
10
,
52
123
Tu
,
R.
,
Kang
,
W.
,
Yang
,
M.
,
Wang
,
L.
,
Bao
,
Q.
,
Chen
,
Z.
et al. (
2021
)
USP29 coordinates MYC and HIF1alpha stabilization to promote tumor metabolism and progression
.
Oncogene
40
,
6417
6429
124
Zhang
,
A.
,
Huang
,
Z.
,
Tao
,
W.
,
Zhai
,
K.
,
Wu
,
Q.
,
Rich
,
J.N.
et al. (
2022
)
USP33 deubiquitinates and stabilizes HIF-2alpha to promote hypoxia response in glioma stem cells
.
EMBO J.
41
,
e109187
125
Mu
,
M.
,
Zhang
,
Q.
,
Li
,
J.
,
Zhao
,
C.
,
Li
,
X.
,
Chen
,
Z.
et al. (
2023
)
USP51 facilitates colorectal cancer stemness and chemoresistance by forming a positive feed-forward loop with HIF1A
.
Cell Death Differ.
30
,
2393
2407
126
Fukuba
,
H.
,
Takahashi
,
T.
,
Jin
,
H.G.
,
Kohriyama
,
T.
and
Matsumoto
,
M.
(
2008
)
Abundance of aspargynyl-hydroxylase FIH is regulated by Siah-1 under normoxic conditions
.
Neurosci. Lett.
433
,
209
214
127
Nakayama
,
K.
and
Ronai
,
Z.
(
2004
)
Siah: new players in the cellular response to hypoxia
.
Cell Cycle
3
,
1345
1347
128
Weerawardhana
,
A.
,
Herath
,
T.U.B.
,
Gayan Chathuranga
,
W.A.
,
Kim
,
T.H.
,
Ekanayaka
,
P.
,
Chathuranga
,
K.
et al. (
2024
)
SIAH1 modulates antiviral immune responses by targeting deubiquitinase USP19
.
J. Med. Virol.
96
,
e29523
129
Liu
,
H.
,
Povysheva
,
N.
,
Rose
,
M.E.
,
Mi
,
Z.
,
Banton
,
J.S.
,
Li
,
W.
et al. (
2019
)
Role of UCHL1 in axonal injury and functional recovery after cerebral ischemia
.
Proc. Natl Acad. Sci. U.S.A.
116
,
4643
4650
130
Collins
,
A.
,
Scott
,
R.
,
Wilson
,
C.L.
,
Abbate
,
G.
,
Ecclestone
,
G.B.
,
Albanese
,
A.G.
et al. (
2024
)
UCHL1-dependent control of hypoxia-inducible factor transcriptional activity during liver fibrosis
.
Biosci. Rep.
44
,
BSR20232147
131
Turnbull
,
A.P.
,
Ioannidis
,
S.
,
Krajewski
,
W.W.
,
Pinto-Fernandez
,
A.
,
Heride
,
C.
,
Martin
,
A.C.L.
et al. (
2017
)
Molecular basis of USP7 inhibition by selective small-molecule inhibitors
.
Nature
550
,
481
486
132
Sowa
,
M.E.
,
Bennett
,
E.J.
,
Gygi
,
S.P.
and
Harper
,
J.W.
(
2009
)
Defining the human deubiquitinating enzyme interaction landscape
.
Cell
138
,
389
403
133
He
,
L.
,
Liu
,
X.
,
Yang
,
J.
,
Li
,
W.
,
Liu
,
S.
,
Liu
,
X.
et al. (
2018
)
Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis
.
Cell Res.
28
,
934
951
134
Pickel
,
C.
,
Gunter
,
J.
,
Ruiz-Serrano
,
A.
,
Spielmann
,
P.
,
Fabrizio
,
J.A.
,
Wolski
,
W.
et al. (
2019
)
Oxygen-dependent bond formation with FIH regulates the activity of the client protein OTUB1
.
Redox Biol.
26
,
101265
135
Ruiz-Serrano
,
A.
,
Boyle
,
C.N.
,
Monne Rodriguez
,
J.M.
,
Gunter
,
J.
,
Jucht
,
A.E.
,
Pfundstein
,
S.
et al. (
2022
)
The deubiquitinase OTUB1 is a key regulator of energy metabolism
.
Int. J. Mol. Sci.
23
,
1536
136
Ruiz-Serrano
,
A.
,
Monne Rodriguez
,
J.M.
,
Gunter
,
J.
,
Sherman
,
S.P.M.
,
Jucht
,
A.E.
,
Fluechter
,
P.
et al. (
2021
)
OTUB1 regulates lung development, adult lung tissue homeostasis, and respiratory control
.
FASEB J.
35
,
e22039
137
Scholz
,
C.C.
,
Rodriguez
,
J.
,
Pickel
,
C.
,
Burr
,
S.
,
Fabrizio
,
J.A.
,
Nolan
,
K.A.
et al. (
2016
)
FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1
.
PLoS Biol.
14
,
e1002347
138
Bjerrum
,
O.W.
and
Birgens
,
H.S.
(
1986
)
Measurement of beta-2-microglobulin in serum and plasma by an enzyme-linked immunosorbent assay (ELISA)
.
Clin. Chim. Acta
155
,
69
76
139
Cassavaugh
,
J.M.
,
Hale
,
S.A.
,
Wellman
,
T.L.
,
Howe
,
A.K.
,
Wong
,
C.
and
Lounsbury
,
K.M.
(
2011
)
Negative regulation of HIF-1alpha by an FBW7-mediated degradation pathway during hypoxia
.
J. Cell. Biochem.
112
,
3882
3890
140
Gao
,
S.
,
Chen
,
T.
,
Li
,
L.
,
Liu
,
X.
,
Liu
,
Y.
,
Zhao
,
J.
et al. (
2020
)
Hypoxia-inducible ubiquitin specific peptidase 13 contributes to tumor growth and metastasis via enhancing the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-kappaB pathway in hepatocellular carcinoma
.
Front. Cell Dev. Biol.
8
,
587389
141
Xie
,
H.
,
Zhou
,
J.
,
Liu
,
X.
,
Xu
,
Y.
,
Hepperla
,
A.J.
,
Simon
,
J.M.
et al. (
2022
)
USP13 promotes deubiquitination of ZHX2 and tumorigenesis in kidney cancer
.
Proc. Natl Acad. Sci. U.S.A.
119
,
e2119854119
142
Chen
,
Z.
,
Hu
,
F.
,
Zhang
,
Y.
,
Zhang
,
L.
,
Wang
,
T.
,
Kong
,
C.
et al. (
2023
)
Ubiquitin-specific protease 29 attenuates hepatic ischemia-reperfusion injury by mediating TGF-beta-activated kinase 1 deubiquitination
.
Front. Immunol.
14
,
1167667
143
Jiangqiao
,
Z.
,
Tianyu
,
W.
,
Zhongbao
,
C.
,
Long
,
Z.
,
Jilin
,
Z.
,
Xiaoxiong
,
M.
et al. (
2020
)
Ubiquitin-specific peptidase 10 protects against hepatic ischaemic/reperfusion injury via TAK1 signalling
.
Front. Immunol.
11
,
506275
144
Liu
,
H.
,
Fan
,
J.
,
Zhang
,
W.
,
Chen
,
Q.
,
Zhang
,
Y.
and
Wu
,
Z.
(
2020
)
OTUD4 alleviates hepatic ischemia-reperfusion injury by suppressing the K63-linked ubiquitination of TRAF6
.
Biochem. Biophys. Res. Commun.
523
,
924
930
145
Luong le
,
A.
,
Fragiadaki
,
M.
,
Smith
,
J.
,
Boyle
,
J.
,
Lutz
,
J.
,
Dean
,
J.L.
et al. (
2013
)
Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination
.
Circ. Res.
112
,
1583
1591
146
Shen
,
L.
,
Li
,
L.
,
Li
,
M.
,
Wang
,
W.
,
Yin
,
W.
,
Liu
,
W.
et al. (
2018
)
Silencing of NOD2 protects against diabetic cardiomyopathy in a murine diabetes model
.
Int. J. Mol. Med.
42
,
3017
3026
147
Zhang
,
Y.
,
Hailati
,
J.
,
Ma
,
X.
,
Midilibieke
,
H.
and
Liu
,
Z.
(
2023
)
Ubiquitin-specific protease 11 aggravates ischemia-reperfusion-induced cardiomyocyte pyroptosis and injury by promoting TRAF3 deubiquitination
.
Balkan Med. J.
40
,
205
214
148
Lin
,
C.
,
Li
,
L.
,
Xu
,
Q.
,
Xu
,
S.
and
Tang
,
C.
(
2023
)
Yap1-Usp14 axis inhibits neuronal mitophagy during neonatal hypoxia-ischemia encephalopathy by regulation of beclin-1 ubiquitination in mouse
.
Mol. Neurobiol.
60
,
4273
4287
149
Henning
,
N.J.
,
Boike
,
L.
,
Spradlin
,
J.N.
,
Ward
,
C.C.
,
Liu
,
G.
,
Zhang
,
E.
et al. (
2022
)
Deubiquitinase-targeting chimeras for targeted protein stabilization
.
Nat. Chem. Biol.
18
,
412
421
150
Cao
,
X.
,
Yan
,
Z.
,
Chen
,
Z.
,
Ge
,
Y.
,
Hu
,
X.
,
Peng
,
F.
et al. (
2024
)
The emerging role of deubiquitinases in radiosensitivity
.
Int. J. Radiat. Oncol. Biol. Phys.
118
,
1347
1370
151
Goto
,
Y.
,
Koyasu
,
S.
,
Kobayashi
,
M.
and
Harada
,
H.
(
2017
)
The emerging roles of the ubiquitination/deubiquitination system in tumor radioresistance regarding DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties: insight into the development of novel radiosensitizing strategies
.
Mutat. Res.
803–805
,
76
81
152
Clifford
,
S.C.
,
Cockman
,
M.E.
,
Smallwood
,
A.C.
,
Mole
,
D.R.
,
Woodward
,
E.R.
,
Maxwell
,
P.H.
et al. (
2001
)
Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease
.
Hum. Mol. Genet.
10
,
1029
1038
153
Knauth
,
K.
,
Bex
,
C.
,
Jemth
,
P.
and
Buchberger
,
A.
(
2006
)
Renal cell carcinoma risk in type 2 von Hippel-Lindau disease correlates with defects in pVHL stability and HIF-1alpha interactions
.
Oncogene
25
,
370
377
154
Hara
,
K.
,
Takahashi
,
N.
,
Wakamatsu
,
A.
and
Caltabiano
,
S.
(
2015
)
Pharmacokinetics, pharmacodynamics and safety of single, oral doses of GSK1278863, a novel HIF-prolyl hydroxylase inhibitor, in healthy Japanese and Caucasian subjects
.
Drug Metab. Pharmacokinet.
30
,
410
418
155
Parmar
,
D.V.
,
Kansagra
,
K.A.
,
Patel
,
J.C.
,
Joshi
,
S.N.
,
Sharma
,
N.S.
,
Shelat
,
A.D.
et al. (
2019
)
Outcomes of desidustat treatment in people with anemia and chronic kidney disease: a phase 2 study
.
Am. J. Nephrol.
49
,
470
478
156
Beck
,
H.
,
Jeske
,
M.
,
Thede
,
K.
,
Stoll
,
F.
,
Flamme
,
I.
,
Akbaba
,
M.
et al. (
2018
)
Discovery of molidustat (BAY 85-3934): a small-molecule oral HIF-prolyl hydroxylase (HIF-PH) inhibitor for the treatment of renal anemia
.
ChemMedChem
13
,
988
1003
157
Czock
,
D.
and
Keller
,
F.
(
2022
)
Clinical pharmacokinetics and pharmacodynamics of roxadustat
.
Clin. Pharmacokinet.
61
,
347
362
158
Chavan
,
A.
,
Burke
,
L.
,
Sawant
,
R.
,
Navarro-Gonzales
,
P.
,
Vargo
,
D.
and
Paulson
,
S.K.
(
2021
)
Effect of moderate hepatic impairment on the pharmacokinetics of vadadustat, an oral hypoxia-inducible factor prolyl hydroxylase inhibitor
.
Clin. Pharmacol. Drug Dev.
10
,
950
958
159
Chen
,
N.
,
Hao
,
C.
,
Liu
,
B.C.
,
Lin
,
H.
,
Wang
,
C.
,
Xing
,
C.
et al. (
2019
)
Roxadustat treatment for anemia in patients undergoing long-term dialysis
.
N. Engl. J. Med.
381
,
1011
1022
160
Chen
,
N.
,
Hao
,
C.
,
Peng
,
X.
,
Lin
,
H.
,
Yin
,
A.
,
Hao
,
L.
et al. (
2019
)
Roxadustat for anemia in patients with kidney disease not receiving dialysis
.
N. Engl. J. Med.
381
,
1001
1010
161
Giaccia
,
A.
,
Siim
,
B.G.
and
Johnson
,
R.S.
(
2003
)
HIF-1 as a target for drug development
.
Nat. Rev. Drug Discov.
2
,
803
811
162
Choueiri
,
T.K.
,
Bauer
,
T.M.
,
Papadopoulos
,
K.P.
,
Plimack
,
E.R.
,
Merchan
,
J.R.
,
McDermott
,
D.F.
et al. (
2021
)
Inhibition of hypoxia-inducible factor-2alpha in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis
.
Nat. Med.
27
,
802
805
163
Courtney
,
K.D.
,
Ma
,
Y.
,
Diaz de Leon
,
A.
,
Christie
,
A.
,
Xie
,
Z.
,
Woolford
,
L.
et al. (
2020
)
HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma
.
Clin. Cancer Res.
26
,
793
803
164
Toledo
,
R.A.
,
Jimenez
,
C.
,
Armaiz-Pena
,
G.
,
Arenillas
,
C.
,
Capdevila
,
J.
and
Dahia
,
P.L.M.
(
2023
)
Hypoxia-inducible factor 2 alpha (HIF2alpha) inhibitors: targeting genetically driven tumor hypoxia
.
Endocr. Rev.
44
,
312
322
165
Dexheimer
,
T.S.
,
Rosenthal
,
A.S.
,
Luci
,
D.K.
,
Liang
,
Q.
,
Villamil
,
M.A.
,
Chen
,
J.
et al. (
2014
)
Synthesis and structure-activity relationship studies of N-benzyl-2-phenylpyrimidin-4-amine derivatives as potent USP1/UAF1 deubiquitinase inhibitors with anticancer activity against nonsmall cell lung cancer
.
J. Med. Chem.
57
,
8099
8110
166
Liang
,
Q.
,
Dexheimer
,
T.S.
,
Zhang
,
P.
,
Rosenthal
,
A.S.
,
Villamil
,
M.A.
,
You
,
C.
et al. (
2014
)
A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses
.
Nat. Chem. Biol.
10
,
298
304
167
Mennerich
,
D.
,
Kubaichuk
,
K.
and
Kietzmann
,
T.
(
2019
)
DUBs, hypoxia, and cancer
.
Trends Cancer
5
,
632
653
168
Colombo
,
M.
,
Vallese
,
S.
,
Peretto
,
I.
,
Jacq
,
X.
,
Rain
,
J.C.
,
Colland
,
F.
et al. (
2010
)
Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes
.
ChemMedChem
5
,
552
558
169
Gu
,
Y.
,
Lv
,
F.
,
Xue
,
M.
,
Chen
,
K.
,
Cheng
,
C.
,
Ding
,
X.
et al. (
2018
)
The deubiquitinating enzyme UCHL1 is a favorable prognostic marker in neuroblastoma as it promotes neuronal differentiation
.
J. Exp. Clin. Cancer Res.
37
,
258
170
Kapuria
,
V.
,
Peterson
,
L.F.
,
Fang
,
D.
,
Bornmann
,
W.G.
,
Talpaz
,
M.
and
Donato
,
N.J.
(
2010
)
Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis
.
Cancer Res.
70
,
9265
9276
171
Liu
,
J.
,
Xia
,
H.
,
Kim
,
M.
,
Xu
,
L.
,
Li
,
Y.
,
Zhang
,
L.
et al. (
2011
)
Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
.
Cell
147
,
223
234
172
Weinstock
,
J.
,
Wu
,
J.
,
Cao
,
P.
,
Kingsbury
,
W.D.
,
McDermott
,
J.L.
,
Kodrasov
,
M.P.
et al. (
2012
)
Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47
.
ACS Med. Chem. Lett.
3
,
789
792
173
Mondal
,
M.
,
Cao
,
F.
,
Conole
,
D.
,
Auner
,
H.W.
and
Tate
,
E.W.
(
2024
)
Discovery of potent and selective activity-based probes (ABPs) for the deubiquitinating enzyme USP30
.
RSC Chem. Biol.
5
,
439
446
174
Zheng
,
L.L.
,
Wang
,
L.T.
,
Pang
,
Y.W.
,
Sun
,
L.P.
and
Shi
,
L.
(
2024
)
Recent advances in the development of deubiquitinases inhibitors as antitumor agents
.
Eur. J. Med. Chem.
266
,
116161
175
Mevissen
,
T.E.T.
and
Komander
,
D.
(
2017
)
Mechanisms of deubiquitinase specificity and regulation
.
Annu. Rev. Biochem.
86
,
159
192
176
Sahtoe
,
D.D.
and
Sixma
,
T.K.
(
2015
)
Layers of DUB regulation
.
Trends Biochem. Sci.
40
,
456
467
177
Sahtoe
,
D.D.
,
van Dijk
,
W.J.
,
Ekkebus
,
R.
,
Ovaa
,
H.
and
Sixma
,
T.K.
(
2016
)
BAP1/ASXL1 recruitment and activation for H2A deubiquitination
.
Nat. Commun.
7
,
10292
178
Sahtoe
,
D.D.
,
van Dijk
,
W.J.
,
El Oualid
,
F.
,
Ekkebus
,
R.
,
Ovaa
,
H.
and
Sixma
,
T.K.
(
2015
)
Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G
.
Mol. Cell
57
,
887
900
179
Ventii
,
K.H.
and
Wilkinson
,
K.D.
(
2008
)
Protein partners of deubiquitinating enzymes
.
Biochem. J.
414
,
161
175
180
Goldberg
,
A.L.
(
2012
)
Development of proteasome inhibitors as research tools and cancer drugs
.
J. Cell Biol.
199
,
583
588
This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). Open access for this article was enabled by the participation of University of Cambridge in an all-inclusive Read & Publish agreement with Portland Press and the Biochemical Society under a transformative agreement with JISC.