All living beings experience a wide range of endogenous and exogenous mechanical forces. The ability to detect these forces and rapidly convert them into specific biological signals is essential to a wide range of physiological processes. In vertebrates, these fundamental tasks are predominantly achieved by two related mechanosensitive ion channels called PIEZO1 and PIEZO2. PIEZO channels are thought to sense mechanical forces through flexible transmembrane blade-like domains. Structural studies indeed show that these mechanosensory domains adopt a curved conformation in a resting membrane but become flattened in a membrane under tension, promoting an open state. Yet, recent studies suggest the intriguing possibility that distinct mechanical stimuli activate PIEZO channels through discrete molecular rearrangements of these domains. In addition, biological signals downstream of PIEZO channel activation vary as a function of the mechanical stimulus and of the cellular context. These unique features could explain how PIEZOs confer cells the ability to differentially interpret a complex landscape of mechanical cues.

In the 1950s, Sir Bernard Katz showed that subjecting a frog muscle to transient stretch causes afferent neurons terminating in the muscle’s spindle to fire action potentials at a rate proportional to the stretch intensity [1]. This observation led Katz to conclude that these neurons must possess a “piezo-electric substance,” capable of converting mechanical force into membrane depolarization. It took scientists many decades following this seminal work to identify the first biological piezo-electric molecule, the bacterial mechanosensitive ion channel of large conductance (MscL) cloned by Sukharev and colleagues [2].

Mechanosensitive ion channels (MSCs) allow ions and other aqueous solutes to diffuse across cell membranes down their chemical or electrochemical gradients in response to the presence of certain mechanical stimuli. MSCs sense mechanical forces transmitted to the channel protein either through lipid–protein interactions (force-from-lipids) or through interactions between the channel and cytoskeletal or extracellular filaments attached to the membrane or its vicinity (force-from-filaments) [3]. Mechanical stimuli transmitted through either pathway are thought to regulate channel activity through force-induced conformational changes, enabling the stimulus to favor certain functional states of the channel protein, the most common ones being defined as closed, open, and inactivated. Stimulus-induced conformational changes occur remarkably fast, often within milliseconds, allowing a nearly instant transduction of mechanical cues into downstream electrochemical signals.

Rapid mechanotransduction provides protection against mechanical stress that could lead to cellular and/or tissue damage. For instance, the transduction of osmotically induced membrane stretch (cell swelling) into osmolyte efflux by MSCs trigger contributes to the maintenance of cell volume through regulatory volume decrease (RVD) responses [4]. In single-cell organisms, which experience severe variations of extracellular osmolarities, the RVD response mediated by MSCs is critical to protect against cell lysis upon osmotic swelling [5-7]. In contrast, animal cells do not experience extreme osmotic shocks under normal physiological conditions and possess large membrane reservoirs in the form of caveolae, microvilli, or invaginations, which can be depleted to buffer osmotically induced membrane stretch [8-10]. In these cells, the RVD response mediated by MSCs mainly contributes to the strict maintenance of cell volume and macromolecular crowding required for proper cytoplasmic and cellular functions such as enzyme activity, fluid transport, and electrical excitability [11-13]. Other classical examples of rapid mechanotransduction are proprioceptive reflexes initiated in the skeletal muscle spindle and Golgi tendon organ of vertebrate organisms. The rapid stretch of the former triggers contraction of the muscle (and inhibition of antagonist’s muscle) to prevent injury of overstretched muscle fibers through the myotatic reflex, whereas rapid stretch of the latter triggers muscle relaxation through the inverse myotatic reflex to prevent damage of muscle and connective tissues under excessive tension.

Today, a dozen of evolutionary-distinct families of genes coding for MSCs have been identified [14]. This suggests that MSCs have emerged independently several times during the course of biological evolution to sense mechanical forces of different nature and/or for different biological purposes. The idea that organisms employ distinct MSCs aligns well with the notion that biomechanical forces encompass a heterogeneous group of biologically discernable stimuli. For instance, the amplitude of biomechanical forces varies over many orders of magnitude from piconewton forces produced by molecular motors [15] to hundreds of kilonewton forces estimated for the bite of Tyrannosaurus rex [16]. Biomechanical forces also vary in the direction with which they are being applied with respect to the cell or tissue. For instance, the flow of blood creates tensile forces pushing perpendicularly to blood vessels and also frictional forces (shear stress) exerted parallel to the surface.

In 2010, the Patapoutian group cloned two homologous membrane proteins, called PIEZO1 and PIEZO2, necessary to confer murine neuroblastoma-derived (N2A) cells and dorsal root ganglia neurons the ability to elicit rapid and transient inward currents in response to a cellular indentation of the cell with a blunt glass probe (commonly referred to as a poking stimulus) [17]. Genes encoding PIEZO proteins have only been identified in eukaryotic genomes, and PIEZO1 and PIEZO2 are the only PIEZO proteins expressed by vertebrates. While PIEZO1 is expressed in most cells and tissues, PIEZO2 is predominantly expressed in peripheral sensory neurons [17]. Interestingly, a discrete number of cells co-express PIEZO1 and PIEZO2. These include a sub-population of baroreceptor endings in the aortic arch and carotid bodies [18], the Meissner mechanoreceptors located in the skin [19], and chondrocytes [20]. In addition, both channels co-localize in the centrosome of many cell lines including C2C12 myoblasts, neuroblastoma-derived N2A cells, and IMCD3 kidney epithelial cells [21].

Follow-up studies have demonstrated that PIEZOs create a cation-selective transmembrane pore that opens in response to mechanical deformations of the lipid bilayer in the absence of other cellular components, demonstrating that PIEZO channels obey the so-called force-from-lipid paradigm [22-24]. Yet, recent studies show that disruption of the cytoskeleton impairs mechanically activated currents mediated by both PIEZO1 and PIEZO2, showing that PIEZO may also obey a force-from-filament paradigm in addition to sensing force from the lipids [25-27].

PIEZO1 is essential for monitoring fluid shear stress in lymphatic capillaries [28,29], in blood vessels [30,31], and at the blood–brain barrier interface [32]. Mice in which the PIEZO1 gene is invalidated ubiquitously (global PIEZO1-/-) die before birth but only after the heart starts beating due to disorganized blood vessels, likely because of the lack of shear stress sensing impaired normal vascular development [33]. PIEZO1 senses cell-generated traction forces at focal adhesions, controlling cellular programs such as migration, proliferation, and differentiation [34-39]. Gain-of-function PIEZO1 mutations are linked with red blood cell (RBC) dehydration (also known as xerocytosis or dehydrated hereditary stomatocytosis) [40-43], highlighting an important role of PIEZO1 in mediating RVD in RBCs [44]. PIEZO1 present in RBCs also activates when these cells enter narrow vascular capillaries [45]. Yet, it remains unclear whether PIEZO1 activates when RBCs enter the interendothelial slits of the spleen during splenic filtration [46].

The physiological roles of PIEZO2 have mainly been explored in peripheral sensory neurons. This channel acts as the principal mechanotransducer in proprioceptive neurons innervating muscle spindles and Golgi tendon organ [47,48], revealing that PIEZO2 constitutes Katz’s “piezo-electric substance” speculated while conducting his experiments in the frog muscle [1]. Beyond proprioception, PIEZO2 also acts as an important mechanosensor to transduce gentle touch [49-51] and interoception within many organs and tissues including vascular baroreceptors [18], lungs [52], bladder [53], and the gastrointestinal tract [54]. PIEZO2 activity is strongly potentiated during inflammation [55-57] and is associated with inflammation-related pain states such as allodynia [58,59].

Many studies suggest that the downstream effects of PIEZO channel activation strongly depend on the physiological or cellular contexts. For instance, PIEZO1 activation in stretched epithelial cells promotes cellular division, but PIEZO1 activation in crowded epithelia, wherein cells are compressed as opposed to being stretched, promotes cellular extrusion [60,61]. In addition, PIEZO1 channels often co-localize with calcium-sensitive ion channels, potentially amplifying and diversifying the nature of signaling pathways downstream of PIEZO1 activation [62-67]. Indeed, PIEZO1 colocalizes with BK1 channels in arteries, enhancing their activity in a calcium-dependent manner [62,63]. Furthermore, PIEZO-mediated calcium signals activate various signaling proteins, such as calmodulin, calmodulin-dependent kinases, and Rho GTPases, thereby regulating essential physiological processes including gene expression, cell proliferation, and cytoskeletal remodeling [68,69]. Moreover, the activity of transcriptional co-activators YAP/TAZ and actin cytoskeleton dynamics are also influenced by PIEZO-mediated calcium signaling [70,71].

The intricate signaling network orchestrated by PIEZO channels plays crucial roles in a wide array of physiological and pathophysiological functions, including CaMKII-dependent bone formation [72], CaMKII-Mst1/2-Rac host response during bacterial infection [73], and Rho GTPase linked to cancer metastasis [69]. This diverse range of diseases linked to PIEZO channels highlights their importance in maintaining cellular and organismal homeostasis. By differentially activating downstream molecules with varying calcium sensitivities, PIEZO channels enable cells to fine-tune their responses to distinct mechanical stimuli, ensuring appropriate adaptation to a wide range of physiological contexts.

How do PIEZOs sense different mechanical stimuli?

MSCs represent a heterogeneous group of evolutionary-unrelated membrane proteins exhibiting totally different primary amino acid sequences, membrane topology, tridimensional structures, and subunit stoichiometries [14]. It is hence anticipated that MSCs exhibit different sensitivities to mechanical stimuli. For instance, the bacterial MscL channel opens in response to hypotonic shocks, gigaseal pressurization, and hydrostatic pressure, but no MscL responses to fluid shear stress or compressional forces have yet been reported [2,74,75]. The epithelial sodium channel ENaC senses fluid shear stress [76,77] and hydrostatic pressure [78] but is not known to detect membrane stretching or osmotic swelling [79]. Members of the OSCA/TMEM63 (hyperosmolarity-gated calcium channels/transmembrane proteins 63) MSC family are sensitive to membrane stretch but differ in their sensitivity to mechanical poking [80,81].

In contrast, PIEZO channels respond to all these types of perturbations in different mechanical assays [17,23,30,31,82-85] as well as less common ones including pillar nano-deflection [86], magnetic pulling [87], and ultrasound [67,88]. The diversity of cell-based mechanical stimulation assays that are effective in activating PIEZOs mirrors the diversity of PIEZOs’ physiological functions. The ability of PIEZOs to sense a wide range of mechanical forces makes them ideal multimodal mechanosensors, capable of transducing a wide range of biomechanical forces experienced by eukaryotic organisms.

How do PIEZO channels sense membrane tension? PIEZOs consist of the assembly of three large identical subunits, each encompassing ~2500 residues. The homotrimeric complex, which contains 114 transmembrane helices, displays a unique bowl-like architecture with a central ion conduction pore surrounded by three curved peripheral mechanosensory domains called blades [89-95]. Elastic continuous theory predicts that, within a flat membrane, the curved blades compel the membrane to curve around the channel, creating a large footprint of the bent membrane. In turn, due to the non-zero membrane bending rigidity, the curved membrane is predicted to bring about work to flatten the blades [96]. According to this gating mechanism, the amount of work brought about by the membrane footprint to flatten the blades would increase as membrane tension increases, implying that the channel structure would flatten during membrane stretch [97,98]. This canonical curvature-based gating mechanism is consistent with cryo-EM images, showing that the local membrane curvature controls the degree of curvature/flatness of the blades [92,94]. Molecular dynamics simulations of PIEZO1 further revealed that membrane flattening correlates with a flattening of the blades and opening of the pore [99], in agreement with elastic theory and experimental structures (Figure 1a). Beyond modulating channel curvature, membrane tension and curvature also influence the diffusion and localization of PIEZO1 channels in the membrane [100].

Known and hypothetical force-sensing mechanisms in PIEZO channels.

Figure 1:
Known and hypothetical force-sensing mechanisms in PIEZO channels.

(A) Canonical gating mechanism in which membrane stretch/flattening causes the curved PIEZO blades to flatten and open the fenestrated channel pore. (B) Hypothetical non-canonical gating mechanisms in which other mechanical stimuli cause distinct conformational changes to open the channel pore, either through a force-from-filament (left) or a force-from-lipid (right) paradigm.

Figure 1:
Known and hypothetical force-sensing mechanisms in PIEZO channels.

(A) Canonical gating mechanism in which membrane stretch/flattening causes the curved PIEZO blades to flatten and open the fenestrated channel pore. (B) Hypothetical non-canonical gating mechanisms in which other mechanical stimuli cause distinct conformational changes to open the channel pore, either through a force-from-filament (left) or a force-from-lipid (right) paradigm.

Close modal

How do PIEZO channels respond to other mechanical stimuli? One possibility is that distinct mechanical stimuli, i.e. stimuli delivered through different in vitro laboratory apparatus or induced in vivo upon distinct physiological processes, converge to produce a common mechanical cue, which is then sensed by the channel’s mechanosensory machinery. The plausibility of this scenario is supported by the notion that PIEZOs tend to be more sensitive to membrane tension than any other known MSC [94,98,101], suggesting that a slight increase in membrane tension caused by any type of mechanical perturbations of the cell membrane could activate the channel.

Another possibility is that PIEZO channels harbor discrete mechanotransduction pathways dedicated to sensing specific types of mechanical deformations of the cell membrane and/or associated cellular structures (e.g. tension, compression, friction, and torque). We find this scenario appealing for several reasons. First, it is now well established that the kinetics of ionic currents mediated by PIEZO channels depend on the nature of the mechanical stimulus. For instance, poke stimuli elicit fast-inactivating currents in both PIEZO1 and PIEZO2, while stretch stimuli applied for an equivalent duration by the patch pipette pressurization method elicit slow-inactivating (PIEZO1) or nearly non-inactivating (PIEZO2) currents [17,102]. Although these differences may be contributed by differential adaptation of the cell to these stimuli [103], this strikingly different kinetics behavior hints that these stimuli could activate these channels through distinct functional pathways.

Second, independent labs have discovered PIEZO mutations that abrogate or strongly reduce the sensitivity of the channel to a specific mechanical stimulus with no or minimal alteration of sensitivity to others [26,90]. For instance, deleting PIEZO2’s fifth intrinsically disordered intracellular loop abolishes PIEZO2-mediated neurite outgrowth and reduces ionic currents evoked by poking stimuli but does not affect stretch-sensitive currents [26]. Similarly, deletion of PIEZO1’s extracellular loops connecting transmembrane helices 15–16 and 19–20 fully eliminates the ability of the channel to produce stretch-sensitive ionic currents but only reduces the amplitude of poking-induced ionic currents [90]. Such a striking stimulus-specificity for a mutant phenotype is difficult to reconcile with the idea that the channel opens and closes its ion permeation pathway through the same molecular mechanism under different stimulation scenarios. These observations make more sense if one assumes that the channel engages distinct conformational pathways to regulate the opening of the pore.

Third, PIEZO is associated with cytosolic regulatory proteins and transmembrane scaffolding proteins, including platelet endothelial cell adhesion molecule-1 (PECAM1), vascular endothelial cadherin (VE-cadherin), integrins, and the cadherin-β-catenin complex [25,104-111]. These complex networks of protein–protein interactions are well poised to facilitate the transmission of mechanical forces through intracellular and extracellular filaments, hence influencing functional states populated in the presence of specific mechanical stimuli. How mechanical forces locally applied to the channel structure through these interactions would bias conformational states remain, however, currently unclear (left panel in Figure 1b).

Fourth, we have recently shown that gentle shear stress activates PIEZO1 through a unique conformational rearrangement of its blades [112,113]. To this aim, we used genetically encoded conformational probes derived from a cyclic permuted green fluorescent protein. We discovered that two independent probes (one inserted at the peripheral tip of the blade and the other within an intracellular disordered loop closer to the pore) elicit large fluorescence signals in response to low-intensity fluid flow stimuli but not to mechanical poking nor osmotic shocks, despite the effectiveness of all tested stimuli to open the channel. What kind of conformational changes might be induced by gentle fluid flow to activate PIEZO1? Although the answer to this question still eludes us, we speculate that this stimulus might promote a unidirectional displacement of lipids in the outer leaflet of the cell membrane, causing asymmetric conformational changes of the channel blades to open the pore (right panel in Figure 1b). An interesting prediction from this hypothetical asymmetric gating mechanism is that some adjacent blades get closer to each other. In contrast, the canonical symmetrical gating mechanism predicts that all blades get physically separated from each other. Future studies will be needed to address this question.

Perspectives
  • PIEZO channels act as essential mechanotransducers in cells experiencing mechanical stress of different amplitudes and directions.

  • Studies combining electrophysiology with mutagenesis or fluorimetry suggest that PIEZOs' unique sensitivity to different mechanical stimuli could be conferred by the presence of distinct mechanotransduction pathways housed within the channel’s mechanosensory domains.

  • Structural evidence supporting multimodal gating in PIEZO channels – the existence of distinct conformational pathways by which the channel pore opens in response to distinct mechanical stimuli – is still lacking. Future studies will be needed to answer this important question.

We declare no conflict of interest.

J.J.L. and T.D.W. wrote this review together.

The Lacroix Laboratory was supported by NIH grant [GM130834].

MSC

mechanosensitive ion channel

MscL

mechanosensitive ion channel of large conductance

PECAM1

platelet endothelial cell adhesion molecule-1

RBC

red blood cell

RVD

regulatory volume decrease

VE-cadherin

vascular endothelial cadherin

1
Katz
,
B
. (
1950
)
Depolarization of sensory terminals and the initiation of impulses in the muscle spindle
.
J Physiol
111
,
261
282
https://doi.org/10.1113/jphysiol.1950.sp004479
2
Sukharev
,
S.I.
,
Blount
,
P.
,
Martinac
,
B.
,
Blattner
,
F.R.
and
Kung
,
C
. (
1994
)
A large-conductance mechanosensitive channel in E. coli encoded by mscL alone
.
Nature New Biol.
368
,
265
268
https://doi.org/10.1038/368265a0
3
Cox
,
C.D.
,
Bavi
,
N.
and
Martinac
,
B
. (
2019
)
Biophysical principles of ion-channel-mediated mechanosensory transduction
.
Cell Rep.
29
,
1
12
https://doi.org/10.1016/j.celrep.2019.08.075
4
Eveloff
,
J.L.
and
Warnock
,
D.G
. (
1987
)
Activation of ion transport systems during cell volume regulation
.
Am J Physiol
252
,
F1
F10
https://doi.org/10.1152/ajprenal.1987.252.1.F1
5
Moller
,
E.
,
Britt
,
M.
,
Schams
,
A.
,
Cetuk
,
H.
,
Anishkin
,
A.
and
Sukharev
,
S
. (
2023
)
Mechanosensitive channel MscS is critical for termination of the bacterial hypoosmotic permeability response
.
J. Gen. Physiol.
155
, e202213168 https://doi.org/10.1085/jgp.202213168
6
Booth
,
I.R.
and
Blount
,
P
. (
2012
)
The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves
.
J. Bacteriol.
194
,
4802
4809
https://doi.org/10.1128/JB.00576-12
7
Nakayama
,
Y.
,
Yoshimura
,
K.
and
Iida
,
H
. (
2012
)
Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response
.
Nat. Commun.
3
, 1020 https://doi.org/10.1038/ncomms2014
8
Raucher
,
D.
and
Sheetz
,
M.P
. (
1999
)
Characteristics of a membrane reservoir buffering membrane tension
.
Biophys. J.
77
,
1992
2002
https://doi.org/10.1016/S0006-3495(99)77040-2
9
Pietuch
,
A.
,
Brückner
,
B.R.
and
Janshoff
,
A
. (
2013
)
Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress
.
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
1833
,
712
722
https://doi.org/10.1016/j.bbamcr.2012.11.006
10
Sinha
,
B.
,
Köster
,
D.
,
Ruez
,
R.
,
Gonnord
,
P.
,
Bastiani
,
M.
,
Abankwa
,
D.
et al
. (
2011
)
Cells respond to mechanical stress by rapid disassembly of caveolae
.
Cell
144
,
402
413
https://doi.org/10.1016/j.cell.2010.12.031
11
Scemes
,
E.
and
Cassola
,
A.C
. (
1995
)
Regulatory volume decrease in neurons of Aplysia brasiliana
.
J. Exp. Zool.
272
,
329
337
https://doi.org/10.1002/jez.1402720502
12
Toney
,
G.M
. (
2010
)
Regulation of neuronal cell volume: from activation to inhibition to degeneration
.
J. Physiol. (Lond.)
588
,
3347
3348
https://doi.org/10.1113/jphysiol.2010.197251
13
Grygorczyk
,
R.
,
Boudreault
,
F.
,
Platonova
,
A.
and
Orlov
,
S.N
. (
2015
)
Salt and osmosensing: role of cytoplasmic hydrogel
.
Pflugers Arch.
467
,
475
487
https://doi.org/10.1007/s00424-014-1680-2
14
Kefauver
,
J.M.
,
Ward
,
A.B.
and
Patapoutian
,
A
. (
2020
)
Discoveries in structure and physiology of mechanically activated ion channels
.
Nature New Biol.
587
,
567
576
https://doi.org/10.1038/s41586-020-2933-1
15
Shukla
,
S.
,
Troitskaia
,
A.
,
Swarna
,
N.
,
Maity
,
B.K.
,
Tjioe
,
M.
,
Bookwalter
,
C.S.
et al
. (
2022
)
High-throughput force measurement of individual kinesin-1 motors during multi-motor transport
.
Nanoscale
14
,
12463
12475
https://doi.org/10.1039/d2nr01701f
16
Meers
,
M.B
. (
2002
)
Maximum bite force and prey size of tyrannosaurus rex and their relationships to the inference of feeding behavior
.
Hist. Biol.
16
,
1
12
https://doi.org/10.1080/0891296021000050755
17
Coste
,
B.
,
Mathur
,
J.
,
Schmidt
,
M.
,
Earley
,
T.J.
,
Ranade
,
S.
,
Petrus
,
M.J.
et al
. (
2010
)
Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
.
Science
330
,
55
60
https://doi.org/10.1126/science.1193270
18
Zeng
,
W.-Z.
,
Marshall
,
K.L.
,
Min
,
S.
,
Daou
,
I.
,
Chapleau
,
M.W.
,
Abboud
,
F.M.
et al
. (
2018
)
PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex
.
Science
362
,
464
467
https://doi.org/10.1126/science.aau6324
19
García-Mesa
,
Y.
,
Cuendias
,
P.
,
Alonso-Guervós
,
M.
,
García-Piqueras
,
J.
,
Martín-Biedma
,
B.
,
Cobo
,
T
, et al
. (
2024
)
Immunohistochemical detection of PIEZO1 and PIEZO2 in human digital Meissner´s corpuscles
.
Ann. Anat.
252
,
152200
https://doi.org/10.1016/j.aanat.2023.152200
20
Lee
,
W.
,
Leddy
,
H.A.
,
Chen
,
Y.
,
Lee
,
S.H.
,
Zelenski
,
N.A.
,
McNulty
,
A.L.
et al
. (
2014
)
Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage
.
Proc. Natl. Acad. Sci. U.S.A.
111
,
E5114
22
https://doi.org/10.1073/pnas.1414298111
21
David
,
L.
,
Martinez
,
L.
,
Xi
,
Q.
,
Kooshesh
,
K.A.
,
Zhang
,
Y.
,
Shah
,
J.V.
et al
. (
2023
)
Piezo mechanosensory channels regulate centrosome integrity and mitotic entry
.
Proc. Natl. Acad. Sci. U.S.A.
120
, e2213846120 https://doi.org/10.1073/pnas.2213846120
22
Cox
,
C.D.
,
Bae
,
C.
,
Ziegler
,
L.
,
Hartley
,
S.
,
Nikolova-Krstevski
,
V.
,
Rohde
,
P.R.
et al
. (
2016
)
Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension
.
Nat. Commun.
7
,
10366
https://doi.org/10.1038/ncomms10366
23
Syeda
,
R.
,
Florendo
,
M.N.
,
Cox
,
C.D.
,
Kefauver
,
J.M.
,
Santos
,
J.S.
,
Martinac
,
B
, et al
. (
2016
)
Piezo1 channels are inherently mechanosensitive
.
Cell Rep.
17
,
1739
1746
https://doi.org/10.1016/j.celrep.2016.10.033
24
Coste
,
B.
,
Xiao
,
B.
,
Santos
,
J.S.
,
Syeda
,
R.
,
Grandl
,
J.
,
Spencer
,
K.S.
et al
. (
2012
)
Piezo proteins are pore-forming subunits of mechanically activated channels
.
Nature New Biol.
483
,
176
181
https://doi.org/10.1038/nature10812
25
Wang
,
J.
,
Jiang
,
J.
,
Yang
,
X.
,
Zhou
,
G.
,
Wang
,
L.
and
Xiao
,
B
. (
2022
)
Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-β-catenin mechanotransduction complex
.
Cell Rep.
38
,
110342
https://doi.org/10.1016/j.celrep.2022.110342
26
Verkest
,
C.
,
Schaefer
,
I.
,
Nees
,
T.A.
,
Wang
,
N.
,
Jegelka
,
J.M.
,
Taberner
,
F.J.
et al
. (
2022
)
Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2
.
Nat. Commun.
13
,
1365
https://doi.org/10.1038/s41467-022-28974-6
27
Nourse
,
J.L.
and
Pathak
,
M.M
. (
2017
)
How cells channel their stress:Interplay between Piezo1 and the cytoskeleton
.
Semin. Cell Dev. Biol.
71
,
3
12
https://doi.org/10.1016/j.semcdb.2017.06.018
28
Choi
,
D.
,
Park
,
E.
,
Jung
,
E.
,
Cha
,
B.
,
Lee
,
S.
,
Yu
,
J
, et al
. (
2019
)
Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance
.
JCI Insight
4
, e125068 https://doi.org/10.1172/jci.insight.125068
29
Nonomura
,
K.
,
Lukacs
,
V.
,
Sweet
,
D.T.
,
Goddard
,
L.M.
,
Kanie
,
A.
,
Whitwam
,
T.
et al
. (
2018
)
Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation
.
Proc. Natl. Acad. Sci. U.S.A.
115
,
12817
12822
https://doi.org/10.1073/pnas.1817070115
30
Ranade
,
S.S.
,
Qiu
,
Z.
,
Woo
,
S.-H.
,
Hur
,
S.S.
,
Murthy
,
S.E.
,
Cahalan
,
S.M.
et al
. (
2014
)
Piezo1, a mechanically activated ion channel, is required for vascular development in mice
.
Proc. Natl. Acad. Sci. U.S.A.
111
,
10347
10352
https://doi.org/10.1073/pnas.1409233111
31
Wang
,
S.
,
Chennupati
,
R.
,
Kaur
,
H.
,
Iring
,
A.
,
Wettschureck
,
N.
and
Offermanns
,
S
. (
2016
)
Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release
.
J. Clin. Invest.
126
,
4527
4536
https://doi.org/10.1172/JCI87343
32
Cibelli
,
A.
,
Ballesteros-Gomez
,
D.
,
McCutcheon
,
S.
,
Yang
,
G.L.
,
Bispo
,
A.
,
Krawchuk
,
M.
et al
. (
2024
)
Astrocytes sense glymphatic-level shear stress through the interaction of sphingosine-1-phosphate with Piezo1
.
iScience
27
, 110069 https://doi.org/10.1016/j.isci.2024.110069
33
Li
,
J.
,
Hou
,
B.
,
Tumova
,
S.
,
Muraki
,
K.
,
Bruns
,
A.
,
Ludlow
,
M.J.
et al
. (
2014
)
Piezo1 integration of vascular architecture with physiological force
.
Nature New Biol.
515
,
279
282
https://doi.org/10.1038/nature13701
34
Pathak
,
M.M.
,
Nourse
,
J.L.
,
Tran
,
T.
,
Hwe
,
J.
,
Arulmoli
,
J.
,
Le
,
D.T
, et al
.
Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells
.
Proc Natl Acad Sci U.S.A
111
,
16148
16153
https://doi.org/10.1073/pnas.1409802111
35
Ellefsen
,
K.L.
,
Holt
,
J.R.
,
Chang
,
A.C.
,
Nourse
,
J.L.
,
Arulmoli
,
J.
,
Mekhdjian
,
A.H.
et al
. (
2019
)
Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers
.
Commun. Biol.
2
,
298
https://doi.org/10.1038/s42003-019-0514-3
36
Holt
,
J.R.
,
Zeng
,
W.-Z.
,
Evans
,
E.L.
,
Woo
,
S.-H.
,
Ma
,
S.
,
Abuwarda
,
H.
et al
. (
2021
)
Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing
.
Elife
10
, e65415 https://doi.org/10.7554/eLife.65415
37
Jairaman
,
A.
,
Othy
,
S.
,
Dynes
,
J.L.
,
Yeromin
,
A.V.
,
Zavala
,
A.
,
Greenberg
,
M.L.
et al
. (
2021
)
Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4+ T cell responses
.
Sci. Adv.
7
, eabg5859 https://doi.org/10.1126/sciadv.abg5859
38
Wang
,
Y.
,
Yang
,
H.
,
Jia
,
A.
,
Wang
,
Y.
,
Yang
,
Q.
,
Dong
,
Y
, et al
. (
2022
)
Dendritic cell Piezo1 directs the differentiation of TH1 and Treg cells in cancer
.
Elife
11
, e79957 https://doi.org/10.7554/eLife.79957
39
Segel
,
M.
,
Neumann
,
B.
,
Hill
,
M.F.E.
,
Weber
,
I.P.
,
Viscomi
,
C.
,
Zhao
,
C.
et al
. (
2019
)
Niche stiffness underlies the ageing of central nervous system progenitor cells
.
Nature New Biol.
573
,
130
134
https://doi.org/10.1038/s41586-019-1484-9
40
Andolfo
,
I.
,
Alper
,
S.L.
,
De Franceschi
,
L.
,
Auriemma
,
C.
,
Russo
,
R.
,
De Falco
,
L.
et al
. (
2013
)
Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1
.
Blood
121
,
3925
3935
https://doi.org/10.1182/blood-2013-02-482489
41
Albuisson
,
J.
,
Murthy
,
S.E.
,
Bandell
,
M.
,
Coste
,
B.
,
Louis-Dit-Picard
,
H.
,
Mathur
,
J.
et al
. (
2013
)
Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels
.
Nat. Commun.
4
,
1884
https://doi.org/10.1038/ncomms2899
42
Bae
,
C.
,
Gnanasambandam
,
R.
,
Nicolai
,
C.
,
Sachs
,
F.
and
Gottlieb
,
P.A
. (
2013
)
Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1
.
Proc. Natl. Acad. Sci. U.S.A.
110
,
E1162
8
https://doi.org/10.1073/pnas.1219777110
43
Ma
,
S.
,
Cahalan
,
S.
,
LaMonte
,
G.
,
Grubaugh
,
N.D.
,
Zeng
,
W.
,
Murthy
,
S.E
, et al
. (
2018
)
Common PIEZO1 allele in african populations causes RBC dehydration and attenuates plasmodium infection
.
Cell
173
,
443
455
https://doi.org/10.1016/j.cell.2018.02.047
44
Cahalan
,
S.M.
,
Lukacs
,
V.
,
Ranade
,
S.S.
,
Chien
,
S.
,
Bandell
,
M.
and
Patapoutian
,
A
. (
2015
)
Piezo1 links mechanical forces to red blood cell volume
.
Elife
4
, e07370 https://doi.org/10.7554/eLife.07370
45
Lew
,
V.L
. (
2024
)
The calcium homeostasis of human red blood cells in health and disease: interactions of PIEZO1, the plasma membrane calcium pump, and gardos channels
.
Annu. Rev. Physiol.
87
https://doi.org/10.1146/annurev-physiol-022724-105119
46
Moreau
,
A.
,
Yaya
,
F.
,
Lu
,
H.
,
Surendranath
,
A.
,
Charrier
,
A.
,
Dehapiot
,
B.
et al
. (
2023
)
Physical mechanisms of red blood cell splenic filtration.
.
Proc. Natl. Acad. Sci. U.S.A.
120
, e2300095120 https://doi.org/10.1073/pnas.2300095120
47
Woo
,
S.-H.
,
Lukacs
,
V.
de Nooij
,
J.C.
Zaytseva
,
D.
,
Criddle
,
C.R.
,
Francisco
,
A.
et al
. (
2015
)
Piezo2 is the principal mechanotransduction channel for proprioception
.
Nat. Neurosci.
18
,
1756
1762
https://doi.org/10.1038/nn.4162
48
Mahmud
,
A.A.
,
Nahid
,
N.A.
,
Nassif
,
C.
,
Sayeed
,
M.S.B.
,
Ahmed
,
M.U.
,
Parveen
,
M.
et al
. (
2017
)
Loss of the proprioception and touch sensation channel PIEZO2 in siblings with a progressive form of contractures
.
Clin. Genet.
91
,
470
475
https://doi.org/10.1111/cge.12850
49
Ranade
,
S.S.
,
Woo
,
S.-H.
,
Dubin
,
A.E.
,
Moshourab
,
R.A.
,
Wetzel
,
C.
,
Petrus
,
M.
et al
. (
2014
)
Piezo2 is the major transducer of mechanical forces for touch sensation in mice
.
Nature New Biol.
516
,
121
125
https://doi.org/10.1038/nature13980
50
Ikeda
,
R.
and
Gu
,
J.G
. (
2014
)
Piezo2 channel conductance and localization domains in Merkel cells of rat whisker hair follicles
.
Neurosci. Lett.
583
,
210
215
https://doi.org/10.1016/j.neulet.2014.05.055
51
Woo
,
S.-H.
,
Ranade
,
S.
,
Weyer
,
A.D.
,
Dubin
,
A.E.
,
Baba
,
Y.
,
Qiu
,
Z.
et al
. (
2014
)
Piezo2 is required for Merkel-cell mechanotransduction
.
Nature New Biol.
509
,
622
626
https://doi.org/10.1038/nature13251
52
Nonomura
,
K.
,
Woo
,
S.-H.
,
Chang
,
R.B.
,
Gillich
,
A.
,
Qiu
,
Z.
,
Francisco
,
A.G.
et al
. (
2017
)
Piezo2 senses airway stretch and mediates lung inflation-induced apnoea
.
Nature New Biol.
541
,
176
181
https://doi.org/10.1038/nature20793
53
Marshall
,
K.L.
,
Saade
,
D.
,
Ghitani
,
N.
,
Coombs
,
A.M.
,
Szczot
,
M.
,
Keller
,
J.
et al
. (
2020
)
PIEZO2 in sensory neurons and urothelial cells coordinates urination
.
Nature New Biol.
588
,
290
295
https://doi.org/10.1038/s41586-020-2830-7
54
Servin-Vences
,
M.R.
,
Lam
,
R.M.
,
Koolen
,
A.
,
Wang
,
Y.
,
Saade
,
D.N.
,
Loud
,
M
, et al
. (
2023
)
PIEZO2 in somatosensory neurons controls gastrointestinal transit
.
Cell
186
,
3386
3399
https://doi.org/10.1016/j.cell.2023.07.006
55
Dubin
,
A.E.
,
Schmidt
,
M.
,
Mathur
,
J.
,
Petrus
,
M.J.
,
Xiao
,
B.
,
Coste
,
B
, et al
. (
2012
)
Inflammatory signals enhance piezo2-mediated mechanosensitive currents
.
Cell Rep.
2
,
511
517
https://doi.org/10.1016/j.celrep.2012.07.014
56
Bai
,
T.
,
Li
,
Y.
,
Xia
,
J.
,
Jiang
,
Y.
,
Zhang
,
L.
,
Wang
,
H.
et al
. (
2017
)
Piezo2: a candidate biomarker for visceral hypersensitivity in irritable bowel syndrome?
J. Neurogastroenterol. Motil.
23
,
453
463
https://doi.org/10.5056/jnm16114
57
Romero
,
L.O.
,
Caires
,
R.
,
Nickolls
,
A.R.
,
Chesler
,
A.T.
,
Cordero-Morales
,
J.F.
and
Vásquez
,
V
. (
2020
)
A dietary fatty acid counteracts neuronal mechanical sensitization
.
Nat. Commun.
11
,
2997
https://doi.org/10.1038/s41467-020-16816-2
58
Szczot
,
M.
,
Liljencrantz
,
J.
,
Ghitani
,
N.
,
Barik
,
A.
,
Lam
,
R.
,
Thompson
,
J.H.
et al
. (
2018
)
PIEZO2 mediates injury-induced tactile pain in mice and humans
.
Sci. Transl. Med.
10
, eaat9892 https://doi.org/10.1126/scitranslmed.aat9892
59
Murthy
,
S.E.
,
Loud
,
M.C.
,
Daou
,
I.
,
Marshall
,
K.L.
,
Schwaller
,
F.
,
Kühnemund
,
J.
et al
. (
2018
)
The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice
.
Sci. Transl. Med.
10
, eaat9897 https://doi.org/10.1126/scitranslmed.aat9897
60
Eisenhoffer
,
G.T.
,
Loftus
,
P.D.
,
Yoshigi
,
M.
,
Otsuna
,
H.
,
Chien
,
C.-B.
,
Morcos
,
P.A.
et al
. (
2012
)
Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia
.
Nature New Biol.
484
,
546
549
https://doi.org/10.1038/nature10999
61
Gudipaty
,
S.A.
,
Lindblom
,
J.
,
Loftus
,
P.D.
,
Redd
,
M.J.
,
Edes
,
K.
,
Davey
,
C.F
, et al
. (
2017
)
Mechanical stretch triggers rapid epithelial cell division through Piezo1
.
Nature New Biol.
543
,
118
121
https://doi.org/10.1038/nature21407
62
Haam
,
C.E.
,
Choi
,
S.
,
Byeon
,
S.
,
Oh
,
E.Y.
,
Choi
,
S.-K.
and
Lee
,
Y.H
. (
2024
)
Alteration of Piezo1 signaling in type 2 diabetic mice: focus on endothelium and BK(Ca) channel
.
Pflugers Arch.
476
,
1479
1492
https://doi.org/10.1007/s00424-024-02983-4
63
Jakob
,
D.
,
Klesen
,
A.
,
Allegrini
,
B.
,
Darkow
,
E.
,
Aria
,
D.
,
Emig
,
R
, et al
. (
2021
)
Piezo1 and BK(Ca) channels in human atrial fibroblasts: Interplay and remodelling in atrial fibrillation
.
J. Mol. Cell. Cardiol.
158
,
49
62
https://doi.org/10.1016/j.yjmcc.2021.05.002
64
Peyronnet
,
R.
,
Martins
,
J.R.
,
Duprat
,
F.
,
Demolombe
,
S.
,
Arhatte
,
M.
,
Jodar
,
M.
et al
. (
2013
)
Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells
.
EMBO Rep.
14
,
1143
1148
https://doi.org/10.1038/embor.2013.170
65
Lee
,
K.L.
,
Guevarra
,
M.D.
,
Nguyen
,
A.M.
,
Chua
,
M.C.
,
Wang
,
Y.
and
Jacobs
,
C.R
. (
2015
)
The primary cilium functions as a mechanical and calcium signaling nexus
.
Cilia
4
,
7
https://doi.org/10.1186/s13630-015-0016-y
66
Fan
,
Q.
,
Hadla
,
M.
,
Peterson
,
Z.
,
Nelson
,
G.
,
Ye
,
H.
,
Wang
,
X.
et al
. (
2024
)
Activation of PIEZO1 attenuates kidney cystogenesis in vitro and Ex vivo
.
Kidney360
5
,
1601
1612
https://doi.org/10.34067/KID.0000000598
67
Yoo
,
S.
,
Mittelstein
,
D.R.
,
Hurt
,
R.C.
,
Lacroix
,
J.
and
Shapiro
,
M.G
. (
2022
)
Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification.
.
Nat. Commun.
13
,
493
https://doi.org/10.1038/s41467-022-28040-1
68
Xie
,
L.
,
Wang
,
X.
,
Ma
,
Y.
,
Ma
,
H.
,
Shen
,
J.
,
Chen
,
J.
et al
. (
2023
)
Piezo1 (Piezo-type mechanosensitive ion channel component 1)-mediated mechanosensation in macrophages impairs perfusion recovery after hindlimb ischemia in mice
.
Arterioscler. Thromb. Vasc. Biol.
43
,
504
518
https://doi.org/10.1161/ATVBAHA.122.318625
69
Zhang
,
J.
,
Zhou
,
Y.
,
Huang
,
T.
,
Wu
,
F.
,
Liu
,
L.
,
Kwan
,
J.S.H.
et al
. (
2018
)
PIEZO1 functions as a potential oncogene by promoting cell proliferation and migration in gastric carcinogenesis
.
Mol. Carcinog.
57
,
1144
1155
https://doi.org/10.1002/mc.22831
70
Acheta
,
J.
,
Bhatia
,
U.
,
Haley
,
J.
,
Hong
,
J.
,
Rich
,
K.
,
Close
,
R.
et al
. (
2022
)
Piezo channels contribute to the regulation of myelination in Schwann cells
.
Glia
70
,
2276
2289
https://doi.org/10.1002/glia.24251
71
Pardo-Pastor
,
C.
,
Rubio-Moscardo
,
F.
,
Vogel-González
,
M.
,
Serra
,
S.A.
,
Afthinos
,
A.
,
Mrkonjic
,
S.
et al
. (
2018
)
Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses
.
Proc. Natl. Acad. Sci. U.S.A.
115
,
1925
1930
https://doi.org/10.1073/pnas.1718177115
72
Chen
,
S.
,
Li
,
Z.
,
Chen
,
D.
,
Cui
,
H.
,
Wang
,
J.
,
Li
,
Z.
et al
. (
2023
)
Piezo1-mediated mechanotransduction promotes entheseal pathological new bone formation in ankylosing spondylitis
.
Ann. Rheum. Dis.
82
,
533
545
https://doi.org/10.1136/ard-2022-223428
73
Geng
,
J.
,
Shi
,
Y.
,
Zhang
,
J.
,
Yang
,
B.
,
Wang
,
P.
,
Yuan
,
W.
et al
. (
2021
)
TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection
.
Nat. Commun.
12
,
3519
https://doi.org/10.1038/s41467-021-23683-y
74
Heureaux
,
J.
,
Chen
,
D.
,
Murray
,
V.L.
,
Deng
,
C.X.
and
Liu
,
A.P
. (
2014
)
Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress
.
Cell. Mol. Bioeng.
7
,
307
319
https://doi.org/10.1007/s12195-014-0337-8
75
Petrov
,
E.
,
Rohde
,
P.R.
and
Martinac
,
B
. (
2011
)
Flying-patch patch-clamp study of G22E-MscL mutant under high hydrostatic pressure
.
Biophys. J.
100
,
1635
1641
https://doi.org/10.1016/j.bpj.2011.02.016
76
Satlin
,
L.M.
,
Sheng
,
S.
,
Woda
,
C.B.
and
Kleyman
,
T.R
. (
2001
)
Epithelial Na(+) channels are regulated by flow
.
Am. J. Physiol. Renal Physiol.
280
,
F1010
F1018
https://doi.org/10.1152/ajprenal.2001.280.6.F1010
77
Knoepp
,
F.
,
Ashley
,
Z.
,
Barth
,
D.
,
Baldin
,
J.P.
,
Jennings
,
M.
,
Kazantseva
,
M
, et al
. (
2020
)
Shear force sensing of epithelial Na(+) channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of alphaENaC
.
Proc. Natl. Acad. Sci. U.S.A.
117
,
717
726
https://doi.org/10.1073/pnas.1911243117
78
Awayda
,
M.S.
,
Ismailov
,
I.I.
,
Berdiev
,
B.K.
and
Benos
,
D.J
. (
1995
)
A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers
.
American Journal of Physiology-Cell Physiology
268
,
C1450
C1459
https://doi.org/10.1152/ajpcell.1995.268.6.C1450
79
Awayda
,
M.S.
and
Subramanyam
,
M
. (
1998
)
Regulation of the epithelial Na+ channel by membrane tension
.
J. Gen. Physiol.
112
,
97
111
https://doi.org/10.1085/jgp.112.2.97
80
Jojoa-Cruz
,
S.
,
Dubin
,
A.E.
,
Lee
,
W.-H.
and
Ward
,
A.B
. (
2024
)
Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli
.
Elife
12
, RP93147 https://doi.org/10.7554/eLife.93147
81
Murthy
,
S.E.
,
Dubin
,
A.E.
,
Whitwam
,
T.
,
Jojoa-Cruz
,
S.
,
Cahalan
,
S.M.
,
Mousavi
,
S.A.R.
et al
. (
2018
)
OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels
.
Elife
7
, e41844 https://doi.org/10.7554/eLife.41844
82
Jetta
,
D.
,
Gottlieb
,
P.A.
,
Verma
,
D.
,
Sachs
,
F.
and
Hua
,
S.Z
. (
2019
)
Shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells
.
J Cell Sci
132
https://doi.org/10.1242/jcs.226076
83
Maneshi
,
M.M.
,
Ziegler
,
L.
,
Sachs
,
F.
,
Hua
,
S.Z.
and
Gottlieb
,
P.A
. (
2018
)
Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1
.
Sci. Rep.
8
, 14267 https://doi.org/10.1038/s41598-018-32572-2
84
Lacroix
,
J.J.
,
Botello-Smith
,
W.M.
and
Luo
,
Y
. (
2018
)
Probing the gating mechanism of the mechanosensitive channel Piezo1 with the small molecule Yoda1
.
Nat. Commun.
9
,
2029
https://doi.org/10.1038/s41467-018-04405-3
85
Luo
,
M.
,
Cai
,
G.
,
Ho
,
K.K.Y.
,
Wen
,
K.
,
Tong
,
Z.
,
Deng
,
L.
et al
. (
2022
)
Compression enhances invasive phenotype and matrix degradation of breast Cancer cells via Piezo1 activation
.
BMC Mol. Cell Biol.
23
,
1
https://doi.org/10.1186/s12860-021-00401-6
86
Poole
,
K.
,
Herget
,
R.
,
Lapatsina
,
L.
,
Ngo
,
H.-D.
and
Lewin
,
G.R
. (
2014
)
Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch
.
Nat. Commun.
5
,
3520
https://doi.org/10.1038/ncomms4520
87
Wu
,
J.
,
Goyal
,
R.
and
Grandl
,
J
. (
2016
)
Localized force application reveals mechanically sensitive domains of Piezo1
.
Nat. Commun.
7
, 12939 https://doi.org/10.1038/ncomms12939
88
Prieto
,
M.L.
,
Firouzi
,
K.
,
Khuri-Yakub
,
B.T.
and
Maduke
,
M
. (
2018
)
Activation of piezo1 but not NaV1.2 channels by ultrasound at 43 MHz
.
Ultrasound Med. Biol.
44
,
1217
1232
https://doi.org/10.1016/j.ultrasmedbio.2017.12.020
89
Ge
,
J.
,
Li
,
W.
,
Zhao
,
Q.
,
Li
,
N.
,
Chen
,
M.
,
Zhi
,
P.
et al
. (
2015
)
Architecture of the mammalian mechanosensitive Piezo1 channel
.
Nature New Biol.
527
,
64
69
https://doi.org/10.1038/nature15247
90
Zhao
,
Q.
,
Zhou
,
H.
,
Chi
,
S.
,
Wang
,
Y.
,
Wang
,
J.
,
Geng
,
J.
et al
. (
2018
)
Structure and mechanogating mechanism of the Piezo1 channel
.
Nature New Biol.
554
,
487
492
https://doi.org/10.1038/nature25743
91
Wang
,
L.
,
Zhou
,
H.
,
Zhang
,
M.
,
Liu
,
W.
,
Deng
,
T.
,
Zhao
,
Q.
et al
. (
2019
)
Structure and mechanogating of the mammalian tactile channel PIEZO2
.
Nature New Biol.
573
,
225
229
https://doi.org/10.1038/s41586-019-1505-8
92
Yang
,
X.
,
Lin
,
C.
,
Chen
,
X.
,
Li
,
S.
,
Li
,
X.
and
Xiao
,
B
. (
2022
)
Structure deformation and curvature sensing of PIEZO1 in lipid membranes
.
Nature New Biol.
604
,
377
383
https://doi.org/10.1038/s41586-022-04574-8
93
Saotome
,
K.
,
Murthy
,
S.E.
,
Kefauver
,
J.M.
,
Whitwam
,
T.
,
Patapoutian
,
A.
and
Ward
,
A.B
. (
2018
)
Structure of the mechanically activated ion channel Piezo1
.
Nature New Biol.
554
,
481
486
https://doi.org/10.1038/nature25453
94
Lin
,
Y.-C.
,
Guo
,
Y.R.
,
Miyagi
,
A.
,
Levring
,
J.
,
MacKinnon
,
R.
and
Scheuring
,
S
. (
2019
)
Force-induced conformational changes in PIEZO1
.
Nature New Biol.
573
,
230
234
https://doi.org/10.1038/s41586-019-1499-2
95
Guo
,
Y.R.
and
MacKinnon
,
R
. (
2017
)
Structure-based membrane dome mechanism for Piezo mechanosensitivity
.
Elife
6
, e33660 https://doi.org/10.7554/eLife.33660
96
Haselwandter
,
C.A.
and
MacKinnon
,
R
. (
2018
)
Piezo’s membrane footprint and its contribution to mechanosensitivity
.
Elife
7
, e41968 https://doi.org/10.7554/eLife.41968
97
Haselwandter
,
C.A.
,
Guo
,
Y.R.
,
Fu
,
Z.
and
MacKinnon
,
R
. (
2022
)
Quantitative prediction and measurement of Piezo’s membrane footprint
.
Proc. Natl. Acad. Sci. U.S.A.
119
, e2208027119 https://doi.org/10.1073/pnas.2208027119
98
Haselwandter
,
C.A.
,
Guo
,
Y.R.
,
Fu
,
Z.
and
MacKinnon
,
R
. (
2022
)
Elastic properties and shape of the Piezo dome underlying its mechanosensory function
.
Proc. Natl. Acad. Sci. U.S.A.
119
, e2208034119 https://doi.org/10.1073/pnas.2208034119
99
Jiang
,
W.
,
Del Rosario
,
J.S.
,
Botello-Smith
,
W.
,
Zhao
,
S.
,
Lin
,
Y.-C.
,
Zhang
,
H.
et al
. (
2021
)
Crowding-induced opening of the mechanosensitive Piezo1 channel in silico
.
Commun. Biol.
4
,
84
https://doi.org/10.1038/s42003-020-01600-1
100
Yang
,
S.
,
Miao
,
X.
,
Arnold
,
S.
,
Li
,
B.
,
Ly
,
A.T.
,
Wang
,
H.
et al
. (
2022
)
Membrane curvature governs the distribution of Piezo1 in live cells
.
Nat. Commun.
13
,
7467
https://doi.org/10.1038/s41467-022-35034-6
101
Lewis
,
A.H.
and
Grandl
,
J
. (
2015
)
Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension
.
Elife
4
, e12088 https://doi.org/10.7554/eLife.12088
102
Murthy
,
S.E
. (
2023
)
Deciphering mechanically activated ion channels at the single-channel level in dorsal root ganglion neurons
.
J. Gen. Physiol.
155
, e202213099 https://doi.org/10.1085/jgp.202213099
103
Lewis
,
A.H.
,
Cui
,
A.F.
,
McDonald
,
M.F.
and
Grandl
,
J
. (
2017
)
Transduction of repetitive mechanical stimuli by piezo1 and piezo2 ion channels
.
Cell Rep.
19
,
2572
2585
https://doi.org/10.1016/j.celrep.2017.05.079
104
Lai
,
A.
,
Thurgood
,
P.
,
Cox
,
C.D.
,
Chheang
,
C.
,
Peter
,
K.
,
Jaworowski
,
A.
et al
. (
2022
)
Piezo1 response to shear stress Is controlled by the components of the extracellular matrix
.
ACS Appl. Mater. Interfaces
14
,
40559
40568
https://doi.org/10.1021/acsami.2c09169
105
Zhang
,
T.
,
Chi
,
S.
,
Jiang
,
F.
,
Zhao
,
Q.
and
Xiao
,
B
. (
2017
)
A protein interaction mechanism for suppressing the mechanosensitive Piezo channels
.
Nat. Commun.
8
,
1797
https://doi.org/10.1038/s41467-017-01712-z
106
Desplat
,
A.
,
Penalba
,
V.
,
Gros
,
E.
,
Parpaite
,
T.
,
Coste
,
B.
and
Delmas
,
P
. (
2021
)
Piezo1-Pannexin1 complex couples force detection to ATP secretion in cholangiocytes
.
J. Gen. Physiol.
153
, e202112871 https://doi.org/10.1085/jgp.202112871
107
Zhou
,
Z.
,
Ma
,
X.
,
Lin
,
Y.
,
Cheng
,
D.
,
Bavi
,
N.
,
Secker
,
G.A.
et al
. (
2023
)
MyoD-family inhibitor proteins act as auxiliary subunits of Piezo channels
.
Science
381
,
799
804
https://doi.org/10.1126/science.adh8190
108
Mercado-Perez
,
A.
,
Hernandez
,
J.P.
,
Fedyshyn
,
Y.
,
Treichel
,
A.J.
,
Joshi
,
V.
,
Kossick
,
K.
et al
. (
2024
)
Piezo2 interacts with E-cadherin in specialized gastrointestinal epithelial mechanoreceptors
.
J. Gen. Physiol.
156
, e202213324 https://doi.org/10.1085/jgp.202213324
109
Lei
,
M.
,
Wang
,
W.
,
Zhang
,
H.
,
Gong
,
J.
,
Wang
,
Z.
,
Cai
,
H.
et al
. (
2023
)
Cell-cell and cell-matrix adhesion regulated by Piezo1 is critical for stiffness-dependent DRG neuron aggregation
.
Cell Rep.
42
,
113522
https://doi.org/10.1016/j.celrep.2023.113522
110
Koster
,
A.K.
,
Yarishkin
,
O.
,
Dubin
,
A.E.
,
Kefauver
,
J.M.
,
Pak
,
R.A.
,
Cravatt
,
B.F.
et al
. (
2024
)
Chemical mapping of the surface interactome of PIEZO1 identifies CADM1 as a modulator of channel inactivation
.
Proc. Natl. Acad. Sci. U.S.A.
121
, e2415934121 https://doi.org/10.1073/pnas.2415934121
111
Gaub
,
B.M.
and
Müller
,
D.J
. (
2017
)
Mechanical stimulation of Piezo1 receptors depends on extracellular matrix proteins and directionality of force
.
Nano Lett.
17
,
2064
2072
https://doi.org/10.1021/acs.nanolett.7b00177
112
Ozkan
,
A.D.
,
Wijerathne
,
T.D.
,
Gettas
,
T.
and
Lacroix
,
J.J
. (
2023
)
Force-induced motions of the PIEZO1 blade probed with fluorimetry
.
Cell Rep.
42
,
112837
https://doi.org/10.1016/j.celrep.2023.112837
113
Wijerathne
,
T.
and
Lacroix
,
J
. (
2024
)
Voltage-clamp fluorometry to record flow-activated PIEZO1 currents and fluorometric signals
.
STAR Protoc.
5
, 102789 https://doi.org/10.1016/j.xpro.2023.102789