Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-7 of 7
Keyword: pathogenesis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Biochem Soc Trans (2011) 39 (5): 1493-1498.
Published: 21 September 2011
... regulator of PCD in B. cinerea and that proper regulation of the host-induced PCD is essential for pathogenesis in this and other similar fungal pathogens. 1 To whom correspondence should be addressed (email amirsh@ex.tau.ac.il ). 19 6 2011 © The Authors Journal compilation © 2011...
Abstract
A considerable number of fungal homologues of human apoptotic genes have been identified in recent years. Nevertheless, we are far from being able to connect the different pieces and construct a primary structure of the fungal apoptotic regulatory network. To get a better picture of the available fungal components, we generated an automatic search protocol that is based on protein sequences together with a domain-centred approach. We used this protocol to search all the available fungal databases for domains and homologues of human apoptotic proteins. Among all known apoptotic domains, only the BIR [baculovirus IAP (inhibitor of apoptosis protein) repeat] domain was found in fungi. A single protein with one or two BIR domains is present in most (but not all) fungal species. We isolated the BIR-containing protein from the grey mould fungus Botrytis cinerea and determined its role in apoptosis and pathogenicity. We also isolated and analysed BcNMA , a homologue of the yeast NMA11 gene. Partial knockout or overexpression strains of BcBIR1 confirmed that BcBir1 is anti-apoptotic and this activity was assigned to the N′-terminal part of the protein. Plant infection assays showed that the fungus undergoes massive PCD (programmed cell death) during early stages of infection. Further studies showed that fungal virulence was fully correlated with the ability of the fungus to cope with plant-induced PCD. Together, our result show that BcBir1 is a major regulator of PCD in B. cinerea and that proper regulation of the host-induced PCD is essential for pathogenesis in this and other similar fungal pathogens.
Articles
Biochem Soc Trans (2010) 38 (6): 1453-1457.
Published: 24 November 2010
... accumulation of specific metabolites in various cell types has shed light on mechanisms of disease pathogenesis and may pave the way for future development of new therapies for these LSDs. 1 To whom correspondence should be addressed (email Alessandra.dazzo@stjude.org ). 10 5 2010...
Abstract
The lysosomal system comprises a specialized network of organelles crucial for the sorting, digestion, recycling and secretion of cellular components. With their content of hydrolytic enzymes, lysosomes regulate the degradation of a multitude of substrates that reach these organelles via the biosynthetic or the endocytic route. Gene defects that affect one or more of these hydrolases lead to LSDs (lysosomal storage diseases). This underscores the apparent lack of redundancy of these enzymes and the importance of the lysosomal system in cell and tissue homoeostasis. Some of the lysosomal enzymes may form multiprotein complexes, which usually work synergistically on substrates and, in this configuration, may respond more efficiently to changes in substrate load and composition. A well-characterized lysosomal multienzyme complex is the one comprising the glycosidases β-gal (β-galactosidase) and NEU1 (neuramidase-1), and of the serine carboxypeptidase PPCA (protective protein/cathepsin A). Three neurodegenerative LSDs are caused by either single or combined deficiency of these lysosomal enzymes. Sialidosis (NEU1 deficiency) and galactosialidosis (combined NEU1 and β-gal deficiency, secondary to a primary defect of PPCA) belong to the glycoprotein storage diseases, whereas GM1-gangliosidosis (β-gal deficiency) is a glycosphingolipid storage disease. Identification of novel molecular pathways that are deregulated because of loss of enzyme activity and/or accumulation of specific metabolites in various cell types has shed light on mechanisms of disease pathogenesis and may pave the way for future development of new therapies for these LSDs.
Articles
Biochem Soc Trans (2010) 38 (5): 1286-1289.
Published: 24 September 2010
.... Important discoveries linking the metabolism of M. tuberculosis and pathogenesis has renewed interest in this area of research. Previous experimental studies were limited to the analysis of individual genes or enzymes, whereas recent advances in computational systems biology and high-throughput experimental...
Abstract
Despite decades of research, many aspects of the biology of Mycobacterium tuberculosis remain unclear, and this is reflected in the antiquated tools available to treat and prevent tuberculosis and consequently this disease remains a serious public health problem. Important discoveries linking the metabolism of M. tuberculosis and pathogenesis has renewed interest in this area of research. Previous experimental studies were limited to the analysis of individual genes or enzymes, whereas recent advances in computational systems biology and high-throughput experimental technologies now allows metabolism to be studied on a genome scale. In the present article, we discuss the progress being made in applying system-level approaches to study the metabolism of this important pathogen.
Articles
Accelerated lung aging: a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD)
Biochem Soc Trans (2009) 37 (4): 819-823.
Published: 22 July 2009
... established and are key to our understanding of the pathogenic mechanisms in COPD and may be important for the development of new therapies. There is a relationship between chronic inflammatory diseases and aging, and the processes involved in aging may provide a novel mechanism in the pathogenesis of COPD...
Abstract
An enhanced or abnormal inflammatory response to the lungs to inhaled particles and gases, usually from cigarette smoke, is considered to be a general pathogenic mechanism in COPD (chronic obstructive pulmonary disease). Activation of leucocytes and the development of oxidant–antioxidant and protease–anti-protease imbalances are thought to be important aspects of this enhanced inflammatory response to cigarette smoke. The mechanisms involved in the perpetuation of the inflammatory response in the lungs in patients who develop COPD, even after smoking cessation, are not fully established and are key to our understanding of the pathogenic mechanisms in COPD and may be important for the development of new therapies. There is a relationship between chronic inflammatory diseases and aging, and the processes involved in aging may provide a novel mechanism in the pathogenesis of COPD. There is good evidence linking aging and COPD. During normal aging, pulmonary function deteriorates progressively and pulmonary inflammation increases, accompanied in the lungs by the features of emphysema. These features are accelerated in COPD. Emphysema is associated with markers of accelerated aging in the lungs, and COPD is also associated with features of accelerated aging in other organs, such as the cardiovascular and musculoskeletal systems. Cigarette smoke and other oxidative stresses result in cellular senescence and accelerate lung aging. There is also evidence that anti-aging molecules such as histone deacetylases and sirtuins are decreased in the lungs of COPD patients, compared with smokers without COPD, resulting in enhanced inflammation and further progression of COPD. The processes involved in accelerated aging may provide novel targets for therapy in COPD. The present article reviews the evidence for accelerated aging as a mechanism in the pathogenesis of COPD.
Articles
Biochem Soc Trans (2009) 37 (1): 167-172.
Published: 20 January 2009
... © 2009 Biochemical Society 2009 cancer endosomal sorting complex required for transport (ESCRT) endosome multivesicular body (MVB) neurodegeneration pathogenesis The endocytic down-regulation of numerous signalling receptors such as the EGFR (epidermal growth factor receptor) plays an...
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery plays a critical role in receptor down-regulation, retroviral budding, and other normal and pathological processes. The ESCRT components are conserved in all five major subgroups of eukaryotes. This review summarizes the growing number of links identified between ESCRT-mediated protein sorting in the MVB (multivesicular body) pathway and various human diseases.
Articles
Biochem Soc Trans (2005) 33 (5): 1101-1105.
Published: 26 October 2005
... enzymes and their potential as therapeutic targets. 1 To whom correspondence should be addressed (email eckman@mayo.edu ). 28 7 2005 © 2005 The Biochemical Society 2005 Aβ catabolism Alzheimer's disease endothelin-converting enzyme neprilysin pathogenesis therapeutic...
Abstract
The accumulation of Aβ (amyloid β-protein) peptides in the brain is a pathological hallmark of all forms of AD (Alzheimer's disease) and reducing Aβ levels can prevent or reverse cognitive deficits in mouse models of the disease. Aβ is produced continuously and its concentration is determined in part by the activities ofseveral degradative enzymes, including NEP (neprilysin), IDE (insulin-degrading enzyme), ECE-1 (endothelinconverting enzyme 1) and ECE-2, and probably plasmin. Decreased activity of any of these enzymes due to genetic mutation, or age- or disease-related alterations in gene expression or proteolytic activity, may increase the risk for AD. Conversely, increased expression of these enzymes may confer a protective effect. Increasing Aβ degradation through gene therapy, transcriptional activation or even pharmacological activation of the Aβ-degrading enzymes represents a novel therapeutic strategy for the treatment of AD that is currently being evaluated in cell-culture and animal models. In this paper, we will review the roles of NEP, IDE, ECE and plasmin in determining endogenous Aβ concentration, highlighting recent results concerning the regulation of these enzymes and their potential as therapeutic targets.
Articles
Biochem Soc Trans (2003) 31 (1): 104-107.
Published: 01 February 2003
... 18 July 2002 Copyright 2003 Biochemical Society 2003 pathogenesis pathogen evolution type III system Abbreviations used: Hms, haemin storage. 104 Biochemical Society Transactions (2003) Volume 31, part 1 Yersinia pestis and plague R.W. Titball*1, J. Hill*, D.G. Lawton...
Abstract
Yersinia pestis is the aetiological agent of plague, a disease of humans that has potentially devastating consequences. Evidence indicates that Y. pestis evolved from Yersinia pseudotuberculosis , an enteric pathogen that normally causes a relatively mild disease. Although Y. pestis is considered to be an obligate pathogen, the lifestyle of this organism is surprisingly complex. The bacteria are normally transmitted to humans from a flea vector, and Y. pestis has a number of mechanisms which allow survival in the flea. Initially, the bacteria have an intracellular lifestyle in the mammalian host, surviving in macrophages. Later, the bacteria adopt an extracellular lifestyle. These different interactions with different host cell types are regulated by a number of systems, which are not well characterized. The availability of the genome sequence for this pathogen should now allow a systematic dissection of these regulatory systems.